RESEARCH STATUS AND PROSPECT OF PARAMETER SELECTION FOR THE HS-SMALL MODEL
-
摘要: 小应变土体硬化模型(HSS模型)是在硬化土模型(HS模型)基础上考虑土体小应变特性而提出的,在模拟和预测对变形控制要求严格的地下工程的变形规律和变形量方面,有着较高的精度,通常与实测数据吻合良好。因此,越来越多的地下工程的数值模拟采用HSS模型。但HSS模型的参数较多,参数取值比较困难和麻烦,常规岩土工程勘察报告通常不提供HSS模型的相关参数,需要进一步开展一些高精度、长周期的室内试验才能获取。因此,总结现有关于HSS模型参数取值的研究成果,为后续工作提供参考,具有十分重要的意义。在国内外大量研究文献的基础上,通过总结小应变土体硬化模型参数取值的方法和建议值;进一步指出了现有研究存在的不足,为进一步的研究工作提供参考。Abstract: The HS-Small model (the HSS model) was proposed based on the hardening soil model (the HS model) considering the small strain characteristics of soils, which is more accurate in simulating and predicting the deformation of underground engineerings and can meet the strict deformation control requirements, the numerical analysis results by the HSS model agree well with the measured data. Therefore, more and more numerical analysis of underground engineerings have adopted the HSS model. However, the HSS model has many parameters, and it is difficult and inconvenient to obtain the parameter values. Conventional geological survey reports hardly provide the relevant parameter values of the HSS model, and some high-precision, long-period indoor tests need to be conducted to measure them. Therefore, it is necessary and meaningful to summarize the research status of parameter selection for the HSS model, which can provide engineering experiences and reference to subsequent projects. On the basis of research on a large number of documents at home and abroad, the calculating methods for parameters of the HSS model and the recommended values were summarized.On the other hand, some deficiencies in existing research results were pointed out,which could provide some reference to further research.
-
Key words:
- underground engineering /
- numerical analysis /
- the HS-Small model /
- parameter selection
-
[1] 汪中卫, 王海飙, 戚科骏, 等. 土体小应变试验研究综述与评价[J]. 岩土力学, 2007, 28(7):1518-1524. [2] 王海波, 徐明, 宋二祥. 基于硬化土模型的小应变本构模型研究[J]. 岩土力学, 2011, 32(1):39-43. [3] 管飞. 基于HSS本构模型的软土超大型深基坑3D数值分析[J]. 岩土工程学报, 2010, 32(增刊1):177-180. [4] JARDINE R J, POTTS D M, FOURIE A B, et al. Studies of the Influence of Nonlinear Stress-Strain Characteristics in Soil-Structure Interaction[J]. Geotechnique, 1986, 36:377-396. [5] SCHANZ T, VERMEER P A. On the Stiffness of Sands[J].Géotechnique,1998,48:383-387. [6] SCHANZ T, VERMEER P, BONNIER P. The Hardening Soil Model:Formulation and Verification[C]//Proceedings of 1st International PLAXIS Symposium on Beyond 2000 in Computational Geotechnics. 1999:281-296. [7] DUNCAN J M, CHANG C. Nonlinear Analysis of Stress and Strain in Soils[J] Journal of the Soil Mechanics and Foundations Division,1970,96:1629-1653. [8] BENZ T. Small Strain Stiffness of Soils and Its Numerical Consequences[D]. Stuttgart:University of Stuttgart, 2006. [9] 尹骥. 小应变硬化土模型在上海地区深基坑工程中的应用[J]. 岩土工程学报, 2010, 32(增刊1):166-172. [10] 王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6):1766-1774. [11] 褚峰, 李永盛, 梁发云, 等. 土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J]. 岩石力学与工程学报, 2010, 29(增刊1):3184-3192. [12] 邵羽, 江杰, 陈俊羽, 等. 基于HSS模型与MCC模型的深基坑降水开挖变形分析[J]. 水利学报, 2015, 46(增刊1):231-235. [13] 龚东庆, 郑渊仁. 硬化土体模型分析基坑挡土壁与地盘变形的评估[J]. 岩土工程学报, 2010, 32(增刊2):175-178. [14] 李向约, 胡中雄. 不同排水条件下上海黏土应力-应变曲线的关系[J]. 工程勘察, 1987(2):1-5. [15] BOLTON M D. The Strength and Dilatancy of Sands[J]. Geotechnique, 1986, 36(1):65-78. [16] BRINKGREVE R B J, BROERE W. PLAXIS Material Models Manual[M]. Delft:PLAXIS B V, 2006. [17] 董建国, 赵锡宏. 上海四参数非线性加载地基模型[J]. 工程勘察, 1990(2):12-15. [18] 刘志祥, 张海清. PLAXIS高级应用教程[M]. 北京:机械工业出版社, 2015. [19] 王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海:同济大学, 2012. [20] 周恩平. 考虑小应变的硬化土本构模型在基坑变形分析中的应用[D]. 哈尔滨:哈尔滨工业大学, 2010. [21] 王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8):2283-2290. [22] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2):269-278. [23] 宗露丹, 徐中华, 翁其平, 等. 小应变本构模型在超深大基坑分析中的应用[J]. 地下空间与工程学报, 2019, 15(增刊1):231-242. [24] 陈尚荣, 李通达, 梁发云, 等. 上海临港砂质粉土硬化土小应变模型参数研究[J]. 同济大学学报(自然科学版), 2020, 48(6):841-846. [25] 顾晓强, 陆路通, 李雄威, 等. 土体小应变刚度特性的试验研究[J]. 同济大学学报(自然科学版), 2018, 46(3):312-317. [26] 林乔宇. 厦门花岗岩残积土HSS模型参数的研究及工程应用[D]. 泉州:华侨大学, 2019. [27] 牛浩. 考虑小应变刚度的花岗岩残积土力学试验研究及工程应用[D]. 泉州:华侨大学, 2017. [28] 叶跃鸿. 地下通道施工引起下卧地铁隧道上浮规律及控制措施研究[D]. 杭州:浙江大学, 2017. [29] SURARAK C, LIKITLERSUANG S, WANATOWSKI D, et al. Stiffness and Strength Parameters for Hardening Soil Model of Soft and Stiff Bangkok Clays[J]. Soils and Foundations, 2012, 52(4):682-697. [30] 林乔宇. 厦门花岗岩残积土HSS模型参数的研究及工程应用[D]. 泉州:华侨大学, 2019. [31] 李亚玲, 张彬, 苏海峰, 等. Hardening-Soil模型中参数选取试验研究[J]. 工程地质学报, 2012, 20(增刊1):164-169. [32] HUANG X, SCHWEIGER H F, HUANG H. Influence of Deep Excavations on Nearby Existing Tunnels[J]. International Journal of Geomechanics, 2013, 13(2):170-180. [33] 谢东武, 管飞, 丁文其. 小应变硬化土模型参数的确定与敏感性分析[J]. 地震工程学报, 2017, 39(5):898-906. [34] 刘畅. 考虑土体不同强度与变形参数及基坑支护空间影响的基坑支护变形与内力研究[D]. 天津:天津大学, 2008. [35] 陈峰. 无锡地铁基坑典型地层本构模型适应性研究[D]. 上海:同济大学, 2011. [36] 叶跃鸿. 地下通道施工引起下卧地铁隧道上浮规律及控制措施研究[D]. 杭州:浙江大学, 2017. [37] 陆瑶. 基于HSS模型的盾构隧道施工对邻近桥梁的影响及控制措施研究[D]. 济南:济南大学, 2018. [38] 司马军, 马旭, 潘健. 武汉老黏性土小应变硬化模型参数的试验研究[J]. 水利与建筑工程学报, 2018, 16(3):93-97. [39] NG C W W. An Evaluation of Soil-Structure Interaction Associated with a Multi-Propped Excavation[D]. Bristol:University of Bristol, 1992. [40] OU C Y, SHIAU B Y, WANG I W. Three-Dimensional Deformation Behavior of the Taipei National Enterprise Center (TNEC) Excavation Case History[J]. Canadian Geotechnical Journal, 2000, 37(2):438-448. [41] ROBOSKI J F. Soil Parameters for Constitutive Models of Compressible Chicago Glacial Clays[D]. Evanston:Northwestern University, 2001. [42] LVFTENEGGER R, SCHWEIGER H F, SCHARINGERF. 3D Finite Element Analysis of a Deep Excavation and Comparison with in Situ Measurements[M]. London:Taylor & Francis Group, 2009:193-199. [43] LAWLER M L, FARRELL E R, LOCHADEN A L E. Comparison of the Measured and Finite Element-Predicted Ground Deformations of a Stiff Lodgement Till[J]. Canadian Geotechnical Journal, 2011, 48(1):98-116. [44] BRINKGREVE R B J. Selection of Soil Models and Parameters for Geotechnical Engineering Application[C]//Geo-Frontiers Congress. 2005. [45] 李连祥, 刘嘉典, 李克金, 等. 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10):4021-4029. [46] 张柱刚. 基于HS-Small本构的深基坑开挖-降水过程数值分析及群锚效应研究[D]. 银川:宁夏大学, 2019. [47] CALVELLO M, FINNO R J. Selecting Parameters to Optimize in Model Calibration by Inverse Analysis[J]. Computers & Geotechnics, 2004, 31(5):411-425. [48] VERMEER P A, NEHER H P. A Soft Soil Model that Accounts for Creep[C]//Beyond 2000 in Computational Geotechnics. 1999. [49] JÁKY J. A Nyugalmi Nyomás Tényez je[J]. A Magyar Mérn kés Építész-Egylet K zl nyének, 1944,78(22):355-358. [50] 李友洪, 顾晓强, 梁发云. K0应力条件下砂土小应变剪切模量研究[J]. 长江科学院院报, 2018, 35(11):154-158. [51] 刘麟, 顾晓强, 黄茂松. 利用带弯曲元应力路径三轴仪量测静止土压力系数研究[J]. 岩土工程学报, 2017, 39(增刊2):212-215. [52] BROOKER E W, IRELAND H O. Earth Pressures at Rest Related to Stress History[J]. Canadian Geotechnical Journal, 1965, 2(1):1-15. [53] ABDELHAMID M S, KRIZEK R J. At Rest Lateral Earth Pressure of Consolidating Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1976, 102(7):721-738. [54] FEDERICO A, ELIA G, GERMANO V. A Short Note on the Earth Pressure and Mobilized Angle of Internal Friction in One-Dimensional Compression of Soils[J]. Journal of Geotechnical Engineering, 2008, 3(1):41-46. [55] SIMPSON B. Retaining Structures:Displacement and Design[J]. Geotechnique, 1992, 42(4):541-576. [56] BOLTON M D. Geotechnical Stress Analysis for Bridge Abutment Design[R]. Wokingham,UK:Transport and Road Research Laboratory, 1991. [57] ALPAN I. The Empirical Evaluation of the Coefficients K0 and K0R[J]. Soils and Foundations, 1967, 7(1):31-40. [58] ZHAO X D, ZHOU G Q, TIAN Q H, et al. Coefficient of Earth Pressure at Rest for Normal Consolidated Soils[J]. Mining Science and Technology, 2010, 20(3):406-410. [59] JANBU J. Soil Compressibility as Determined by Oedometer and Triaxial Tests[C]//Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering. 1963. [60] 董学超, 王水林, 郭明伟, 等. 基于压缩试验曲线的HSS模型参数优化[J]. 岩土力学, 2020, 41(增刊2). DOI: 10.16285/j.rsm.2020.0015. [61] 徐中华, 王建华, 王卫东. 主体地下结构与支护结构相结合的复杂深基坑分析[J]. 岩土工程学报, 2006, 28(增刊):1355-1359. [62] 张娇, 张雁, 李青, 等. 上海黏性土的初始剪切模量试验研究[J]. 地下空间与工程学报, 2017, 13(2):337-343. [63] 陈少杰, 顾晓强, 高广运. 土体小应变剪切模量的现场和室内试验对比及工程应用[J]. 岩土工程学报, 2019, 41(增刊2):133-136. [64] HARDIN B O, DRNEVICH V P. Shear Modulus and Damping in Soils[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7):667-692. [65] HARDIN B O. Vibration Modulus of Normally Consolidated Clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2):353-370. [66] HARDIN B O, BLACK W L. Closure to Vibration Modulus of Normally Consolidated Clays[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(6):1531-1537. [67] SEED H B, IDRISS I M. SOIL Moduli and Damping Factors for Dynamic Response Analysis[R]. Berkeley:University of California, 1970. [68] VUCETIC M, DOBRY R. Effect of Soil Plasticity on Cyclic Response[J]. Journal of Geotechnical Engineering, 1991, 117(1). http://doi.org/10.1061/(ASCE)0733-9410(1991)117:(89). [69] STOKOE K H, DARENDELI M B, GILBERT R B, et al. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[C]//International Workshop on Uncertainties in Nonlinear Soil Properties and Their Impact on Modeling Dynamic Soil Response. 2004.
点击查看大图
计量
- 文章访问数: 711
- HTML全文浏览量: 56
- PDF下载量: 19
- 被引次数: 0