Mechanical Properties and Pore Characteristic of Alkali-Activated Aeolian Sand Concrete
-
摘要: 为探究常温养护下碱激发作用对风积沙混凝土力学性能的影响,选取库布齐沙漠风积沙等质量代替河砂(40%),采用NaOH作为激发剂制备碱激发风积沙混凝土。通过抗压强度试验、核磁共振试验研究常温养护下风积沙混凝土抗压强度和孔隙变化规律,并引入灰熵关联度和灰色模型进行分析,建立了NaOH激发风积沙混凝土抗压强度模型。结果表明:常温养护下,随着NaOH掺量的增加,风积沙混凝土抗压强度呈先增加后减小,孔隙度呈先减小后增加;且5%NaOH掺量时风积沙混凝土抗压强度平均增长率最高,28 d最高达51.02 MPa,孔结构最优。5%NaOH激发40%粉煤灰风积沙混凝土28 d的抗压强度与普通20%粉煤灰风积沙混凝土相当,孔结构更优,可有效提高粉煤灰利用率,减少水泥用量。进一步,基于灰熵关联度建立了抗压强度GM(1,2)预测模型,预测值和试验值平均相对误差为1.96%和1.34%,精度较高。Abstract: In order to explore the influence of alkali excitation on the mechanical properties of aeolian sand concrete under normal temperature curing, this study selected the Kubuqi Desert aeolian sand instead of river sand (40%), and using NaOH as the activator to configure alkali-activated aeolian sand concrete. Through compressive strength test and nuclear magnetic resonance test, the compressive strength and pore change law of aeolian sand concrete under normal temperature curing were studied. By introducing grey entropy correlation degree, the compressive strength model of alkali activated aeolian sand concrete was established. The results showed that under normal temperature curing, with the increase of NaOH content, the compressive strength of aeolian sand concrete first increased and then decreased. The porosity first decreased and then increased. The average increase rate of compressive strength of aeolian sand concrete was the highest when 5% NaOH was added, up to 51.02 MPa at 28 d, the pore structure was the best. The 28 d compressive strength of aeolian sand concrete replaced by 40% fly ash which was activated by 5% NaOH was equivalent to that of ordinary 20% fly ash aeolian sand concrete, and its pore structure was better, so as to effectively improve the utilization rate of fly ash and reduce the amount of cement. Furthermore, a predictive model of compressive strength GM(1,2) was established based on the gray entropy correlation degree. The average relative errors between predicted values and test values were 1.96% and 1.34%, with high accuracy.
-
[1] PANGDAENG S, PHOO-NGERNKHAM T, SATA V, et al. Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive[J]. Materials and Design, 2014, 53:269-274. [2] 郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1):28-39. [3] 闫玉蓉, 方永浩, 龚泳帆, 等. 碱激发再生水泥砂浆粉胶凝材料的强度与显微结构[J].材料导报, 2013, 27(24):117-120. [4] 刘树森, 云治厚, 其其格, 等. 我国粉煤灰消纳问题的解决对策:以内蒙古自治区为例[J]. 煤炭加工与综合利用, 2020(8):92-96. [5] JIA Z L, YAN S W, HUO Z L. Laboratory tests on engineering properties of wind-blown sand[J]. Applied Mechanics and Materials, 2012, 170-173:706-709. [6] 董伟, 吕帅, 薛刚. 风积沙与粉煤灰掺量对混凝土力学性能的影响[J]. 硅酸盐通报, 2018, 37(7):2320-2325. [7] 薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2):199-205. [8] GOMAA E, SARGON S, KASHOSI C, et al. Mechanical properties of high early strength class C fly ash-based Alkali activated concrete[J]. Transportation Research Record, 2020, 2674(5):430-443. [9] SOMNA K, JATURAPITAKKUL C, KAJITVICHYANUKUL P, et al. NaOH-activated ground fly ash geopolymer cured at ambient temperature[J]. Fuel, 2011, 90(6):2118-2124. [10] ALIABDO A A, ABD ELMOATY A. SALEM H. Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance[J]. Construction and Building Materials, 2016, 123:581-593. [11] 李根峰. 风积沙粉体混凝土耐久性能及服役寿命预测模型研究[D].呼和浩特:内蒙古农业大学, 2019. [12] COATES G, 肖立志, PRAMMER M. 核磁共振测井原理与应用[M]. 北京:石油工业出版社, 2007. [13] TYROLOGOU P, DUDENEY A W L, GRATTONI C A. Evolution of porosity in geotechnical composites[J]. Magnetic Resonance Imaging, 2005, 23(6):765-768. [14] 刘卫, 邢立. 核磁共振录井[M]. 北京:石油工业出版社, 2011. [15] KIROLS H S, MAHDIPOOR M S, KEVORKOV D, et al. Energy based approach for understanding water droplet erosion[J]. Materials and Design, 2016, 104:76-86. [16] PRINYA C, SILVA P, KWESI S, et al. Effect of SiO2 and Al2O3 on the setting and hardening of high calciumfly ash-based geopolymer systems[J]. Journal Materials Science, 2012, 47(12):4876-4883. [17] 覃丽芳, 曲波, 史才军, 等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12):12057-12063. [18] 周华, 李英亮, 高峰, 等. 低场单边核磁对砖石材料加固效果的评价[J]. 建筑材料学报, 2013, 16(6):1097-1102. [19] 李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2):273-280. [20] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社, 1999. [21] 祝斯月, 陈拴发, 秦先涛, 等. 基于灰关联熵分析法的高粘改性沥青关键指标[J]. 材料科学与工程学报, 2014, 32(6):863-867. [22] 邓聚龙. 灰色系统理论教程[M]. 武汉:华中理工大学出版社, 1990. [23] 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 北京:科学出版社, 2014.
点击查看大图
计量
- 文章访问数: 88
- HTML全文浏览量: 12
- PDF下载量: 2
- 被引次数: 0