EXPERIMENTAL STUDY ON HYDRO-MECHANICAL COUPLING RELAXATION CHARACTERISTICS OF SATURATED SANDSTONE
-
摘要: 岩石水-力耦合松弛特性是影响硐室围岩工程长期安全稳定的关键因素之一。采用岩石多场耦合三轴试验系统,对饱和灰砂岩在水力耦合条件下的有效围压规律及应力速率依存性开展应力松弛试验,并根据松弛特点选用三单元广义Maxwell松弛本构模型进行数值模拟验证。结果表明:1)水-力耦合条件下饱和砂岩具有非完全衰减松弛特性;2)相同有效围压条件下,无孔压试样的松弛程度略低于有孔压试样,而稳态松弛速率只有有孔压试样的45%左右;3)砂岩水-力耦合松弛具有显著的速率相关性,松弛程度和初始松弛速率均随加载速率升高而增大,最高加载速率试样的初始松弛速率几乎为最低加载速率试样的6倍,而稳态松弛速率没有明显差异;4)三单元广义Maxwell松弛本构模型能较为准确地描述砂岩水-力耦合松弛全过程。Abstract: The hydro-mechanical coupling relaxation characteristics is one of the key factors for long-term safety and stability of surrounding rocks. The hydro-mechanical coupling tests on effective confining pressure laws and sensitivity loading rates of saturated grey sandstone were conducted by the multi-field coupling triaxial test system. According to the relaxation characteristics, the generalized Maxwell relaxation constitutive model with three elements was adopted for the implementation of numerical verifications. The results showed that: 1) In the condition of hydro-mechanical coupling, saturated sandstone had the characteristics of incomplete attenuation relaxation. 2) Under the same effective confining pressure, the relaxation degrees of specimens without pore water pressure were slightly lower than that with pore pressure, while relaxation rates in the steady state were only about 45% of that with pore pressure. 3) The relaxation characteristics of sandstone depended significantly on loading rates. The relaxation degrees and initial relaxation rates increased with loading rates, in which the initial relaxation rates of specimens with the highest loading rate were almost six times rates for specimens with the lowest loading rate, while the relaxation rates in the stead state were no obvious different. 4) The whole process of hydro-mechanical coupling relaxation of sandstone could be accurately described by the three element generalized Maxwell relaxation constitutive model with three elements.
-
Key words:
- sandstone /
- relaxation /
- rock rheology /
- hydro-mechanical coupling /
- relaxation constitutive model
-
[1] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):6-31. [2] 邬爱清,朱杰兵. 深部岩石工程力学特性及地应力测试研究综述[J]. 长江科学院院报,2014,31(10):43-50. [3] 陈方明,胡泉光,宁光忠.三轴应力条件下粉砂质泥岩分级松弛特性[J].山东大学学报(工学版),2017,47(3):125-129. [4] 田洪铭,陈卫忠,肖正龙,等.泥质粉砂岩高围压三轴压缩松弛试验研究[J].岩土工程学报,2015,37(8):1433-1439. [5] 蒋昱州,王瑞红,徐卫亚, 等. 岩石力学特性的时间效应[M]. 北京:中国水利水电出版社,2016. [6] 唐礼忠,潘长良.岩石在峰值荷载变形条件下的松弛试验研究[J].岩土力学,2003,24(6):940-942. [7] 许江,马天宇.不同围压下岩石广义松弛特性试验研究[J].岩土力学,2017,38(增刊2):57-66. [8] 于怀昌,赵阳,刘汉东,等.三轴应力作用下水对岩石松弛特性影响作用试验研究[J].岩石力学与工程学报,2015,34(2):313-322. [9] HAUPT M. A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests[J]. Rock Mechanics and Rock Engineering, 1991, 11:179-206. [10] 李亚丽,于怀昌,张丛林.三峡地区巴东组粉砂质泥岩松弛特性研究[J].人民黄河,2011,33(8):143-145. [11] 于怀昌,董金玉,刘汉东,等.粉砂质泥岩峰前、峰后松弛特性试验研究[J].岩石力学与工程学报,2016,35(增刊1):2663-2672. [12] 马冲,胡斌,詹红兵,等. 渗透压与围压对粉砂质泥岩流变特性的影响[J]. 长江科学院院报,2017,34(5):92-98. [13] 陈子全,李天斌,陈国庆,等.水力耦合作用下的砂岩声发射特性试验研究[J].岩土力学,2014,35(10):2815-2822. [14] ZHANG T J, MINA M, WANG H S, et al. A Nonlinear Rheological Model of Backfill Material for Retaining Roadway Sand the Analysis of Its Stability[J]. Mining Science and Technology (China), 2011, 21(2):543-546. [15] 张树光,刘佳琦,陈培培,等.辽西花岗岩水-岩耦合力学特性试验研究[J].岩石力学与工程学报,2015,34(3):520-527. [16] 李道娟,许江,杨红伟,等.循环孔隙水压力作用下砂岩变形特性实验研究[J].地下空间与工程学报,2010,6(2):290-294,305. [17] TANG C, THAM L G, LEE P K K, et al. Coupled Analysis of Flow, Stress and Damage (FSD) in Rock Failure[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(4):477-489. [18] 刘昂,朱军,田光辉. 某地区黑云角闪岩应力松弛特性研究[C]//2019年全国工程地质学术年会论文集. 北京:中国地质学会:2019. 期刊类型引用(14)
1. 付静. 硅灰掺量对水泥混凝土性能和水化机理的影响. 粘接. 2025(02): 99-102 . 百度学术
2. 宋天威,左彦峰,林洛亦,郝桐. 基于改进的半经验超高性能混凝土配合比设计方法研究. 混凝土世界. 2024(01): 39-45 . 百度学术
3. 宋天威,左彦峰,姚越. 原材料对超高性能混凝土性能的影响研究综述. 混凝土世界. 2024(02): 71-81 . 百度学术
4. 刘毓彬,黄勇,鱼瑞,孙健,郭陆龙,梁心铭,左保玺. 天然沙漠砂混凝土配合比优化研究. 硅酸盐通报. 2024(12): 4406-4416 . 百度学术
5. 石伟,庞建勇. 不同矿物掺合料对混凝土力学性能影响研究. 安徽建筑. 2023(10): 105-106+119 . 百度学术
6. 于新民,王德弘,马一丹,刘晏廷,鞠彦忠. 玄武岩纤维和钢纤维活性粉末混凝土性能试验研究. 混凝土. 2023(11): 100-104 . 百度学术
7. 仲志武. 不同应力作用下粉煤灰混凝土徐变后力学性能研究. 工业建筑. 2022(04): 152-157+132 . 本站查看
8. 罗俊,陈鸣,秦明强. 配筋活性粉末混凝土梁抗剪承载力分析. 中外公路. 2021(01): 270-274 . 百度学术
9. 叶庆阳,薛聪聪,余敏,吴明洋. 超高性能混凝土配合比设计与抗压强度试验研究. 工业建筑. 2020(03): 124-130+141 . 本站查看
10. 李广燕. 活性粉末混凝土力学性能的研究. 粘接. 2020(09): 119-122 . 百度学术
11. 黄政宇,贾佳. 材料组成对常温养护UHPC基体性能的影响. 公路工程. 2019(01): 51-56 . 百度学术
12. 孙世国,鲁艳朋. 超高性能混凝土国内外研究进展. 科学技术与工程. 2018(20): 184-199 . 百度学术
13. 陶毅,张海镇,王秋维,史庆轩. 基于最紧密堆积理论制备活性粉末混凝土的试验研究. 云南大学学报(自然科学版). 2017(01): 107-114 . 百度学术
14. 王钧,文慧. 基于新规范的活性粉末混凝土配合比研究综述. 山西建筑. 2016(17): 108-110 . 百度学术
其他类型引用(28)
-

计量
- 文章访问数: 81
- HTML全文浏览量: 7
- PDF下载量: 1
- 被引次数: 42