Chloride Diffusion Model and Diffusion Law Analysis of Concrete Based on GEM Equation
-
摘要: 氯离子在混凝土内的扩散预测是氯离子环境下混凝土耐久性预测的重点和难点。采用Nernst-Einstein方程改进有效介质(GEM)方程一般式,结合试验数据推导了可以预测不同空隙特征、不同保护层厚度混凝土的氯离子扩散过程方程,分析了混凝土养护龄期,矿物掺合料量,纤维掺加量对氯离子扩散过程方程中扩散指数n的影响规律,结合使用寿命预测模型,以氯离子浓度为控制目标,预测了100年设计寿命时,不同混凝土保护层厚度下的临界混凝土孔隙率要求,当最小保护层厚度为6 cm时,混凝土的孔隙率应控制在8%以下,预测结果基本合理,预测方法为沿海混凝土结构工程的氯离子腐蚀耐久性优化设计提供了参考。Abstract: The prediction of chloride diffusion in concrete is the key and difficult point of durability prediction of concrete in chloride environment. Nernst-Einstein equation was used to improve the general formula of GEM equation. Combined with test data, the chloride diffusion process equation of concrete with different void characteristics and different thicknesses of protective layer was derived. The influence of concrete curing age, mineral admixture and fiber content on the diffusion index n in the equation was analyzed. The life prediction model, with chloride ion concentration as the control target, predicted the critical porosity requirements of concrete under different concrete cover thicknesses with 100-year design life. When the minimum cover thickness was 6 cm, the concrete porosity should be controlled below 8%. The prediction results were basically reasonable. The prediction method could provide a reference for the optimal design of chloride corrosion durability of coastal concrete structures.
-
Key words:
- GEM equation /
- durability /
- chloride ion /
- diffusion index
-
[1] 龚洛书, 柳春圃. 混凝土的耐久性及其防护修补[M]. 北京:中国建筑工业出版社, 1990. [2] AMALA J,EHSAN B.Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments:a review[J].Construction and Building Materials,2019,224:1026-1039. [3] RICHARDS J A. Inspection, maintenance and repair of tunnels:International lessons and practice[J]. Tunnelling and Underground Space Technology, 1998, 13(4):369-375. [4] ROMER M, HOLZER L, PFIFFNER M. Swiss tunnel structures:Concrete damage by formation of thaumasite[J]. Cement & Concrete Composites, 2003, 25(8):1111-1117. [5] ŠUPUT J S, MLADENOVIC A, CERNILOGAR L, et al. Deterioration of mortar caused by the formation of thaumasite on the limestone cladding of some Slovenian railway tunnels[J]. Cement and Concrete Composites, 2003, 25(8):1141-1145. [6] COLLEPARDI M,MARCIALIS A,TURRIZZANI R.The kinetics of penetration of chloride ions into concrete[J]. Cement and Concrete Research,1970,1(14):157-164. [7] 麻福斌,李伟华. 海洋环境混凝土中氯离子扩散模型[C]//第八届全国混凝土耐久性学术交流会论文集.北京:中国土木工程学会,2012:101-109. [8] DEBY F, CARCASSèS M,SELLIER A. Probabilistic approach for durability design of reinforced concrete in marine environment[J].Cement and Concrete Research,2009,39:466-471. [9] KWON S J, NA U J, PARK S S, et al. Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion[J]. Structural Safety, 2009, 31(1):75-83. [10] KIRKPATRICK T J, WEYERS R E, ANDERSON-COOK C M, et al. Probabilistic model for the chloride-induced corrosion service life of bridge decks[J]. Cement & Concrete Research, 2002, 32(12):1943-1960. [11] 陈红帅. 细观层次混凝土中氯离子扩散机理研究[D].北京:北京交通大学,2019. [12] MCLACHLAN D S, BLASZKIEWICZ M, NEWNHAM R E. Electrical resistivity of composites[J].Journal of the American Ceramic Society,1990,73:2187-2203. [13] 胡新萍, 李翔宇, 韩保清. GEM方程的多孔混凝土导热行为表征[J]. 硅酸盐通报, 2014, 33(10):2597-2603. [14] LU X Y. Application of the Nernst-Einstein equation to concrete[J]. Cement and Concrete Research, 1997, 27(2):293-302. [15] SHAFIKHANI M, CHIDIAC S E. Quantification of concrete chloride diffusion coefficient-A critical review[J]. Cement and Concrete Composites, 2019, 99:225-250. [16] 王晨飞. 氯盐环境下聚丙烯纤维混凝土耐久性能研究[D]. 西安:西安建筑科技大学, 2012. [17] 陈磊, 王立成, 连军岭. 港口工程混凝土结构基于全寿命耐久性的使用寿命研究[C]//第21届全国结构工程学术会议论文集第Ⅱ册. 2012. [18] 范宏, 赵铁军, WITTMANN F H. 基于结构混凝土中氯离子分布的氯离子扩散模型[C]//中国建筑学会建筑结构分会混凝土结构基本理论和工程应用学术会议论文集. 2006. [19] 金伟良, 薛文, 陈驹. 海岸及近海混凝土材料耐久性设计指标的影响参数分析[J]. 建筑结构学报, 2011, 32(12):86-97. [20] THOMAS M D A, BAMFORTH P B. Modeling chloride diffusion in concrete:effect of fly ash and slag[J]. Cement and Concrete Research, 1999, 29(4):487-495. [21] HASSAN Z.Binding ofexternal chloride by cement pastes[D].Toronto:University of Toronto,2001. [22] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京:东南大学, 2004. [23] 王学斌. 海底隧道环境腐蚀性评价及二次衬砌混凝土室内加速腐蚀分析[J]. 隧道建设, 2012, 32(6):796-801. [24] 刘伟, 邢锋, 谢友均. 水灰比、矿物掺合料对混凝土孔隙率的影响[J]. 低温建筑技术,2006(1):9-11. [25] 刘强,黄绵松,金峰.临海隧道混凝土结构耐久性和使用寿命研究[J]. 北京交通大学学报, 2018, 42(6):1-8. [26] 侯昌银. 厦门东通道海底隧道土建结构功能性检测技术研究[D]. 成都:西南交通大学, 2010.
点击查看大图
计量
- 文章访问数: 209
- HTML全文浏览量: 70
- PDF下载量: 2
- 被引次数: 0