Fragility Analysis of Transmission Towers with a Strong Wind Based on First-Passage Failure Criterion
-
摘要: 参照输电塔现行设计规范,首先,获得了风荷载作用下单塔结构的能力曲线,并依据结构构件的受力特征,以塔顶位移角为指标讨论了3种首次超越破坏的界限状态。其次,基于拉丁超立方抽样技术获得的结构等效静力计算样本,对界限值划分的合理性进行验证。最后,结合不确定分析样本的统计特性,计算塔架在最不利风向角下,不同顶点位移角限值的易损性曲线,并对比了采用动力可靠性分析获得的"三塔两线"体系计算结果。HCLPF(High Confidence, Low Probability of Failure)对应风速值表明,不同方法的计算结果较为接近,但单塔结构计算效率较高。Abstract: The capacity curves of lattice transmission towers under wind loading were first calculated based on current design codes. According to the stress characteristics of structural components, three performance indexes under the first-passage failure criterion were discussed by using the displacement angle of the tower top as an indicator. Then, these indexes were validated by implementing the statistical analysis based on the Latin Hypercube Sampling (LHS) of equivalent static calculation. Thirdly, the fragility curves under unfavorable wind directions were calculated with the uncertain characteristics of the vertex displacement angle. These results were validated with an overhead transmission line-tower system by using the first-passage failure theory. Wind speeds corresponding to the HCLPF (High Confidence, Low Probability of Failure) results showed that the results under different methods were very close to each other, but the LHS approach had higher calculation efficiency.
-
Key words:
- transmission tower /
- capacity curve /
- fragility curve /
- HCLPF /
- first-passage failure
-
[1] 厉天威,江巳彦,赵建华,等. 南方电网沿海地区输电线路风灾事故分析[J]. 高压电器,2016(6):23-28. [2] 康斌. 我国台风灾害统计分析[J]. 中国防汛抗旱,2016(2):36-40. [3] GROSSI P. Catastrophe modeling:a new approach to managing risk[M]. Boston:Springer Science & Business Media, 2005. [4] 吴明祥,包建强,叶尹,等. 超强台风"桑美"引起温州电网输电线路事故的分析[J]. 电力建设,2007(9):39-41. [5] MINOR J E, MEHTA K C. Wind damage observations and implications[J]. Journal of the Structural Division,1979, 105(11):2279-2291. [6] LEICESTER R H, BUBB C, DORMAN C, et al. An assessment of potential cyclone damage to dwellings in Australia[M]. New York:Pergamon, 1979. [7] LI Y, ELLINGWOOD B R. Hurricane damage to residential construction in the US:importance of uncertainty modeling in risk assessment[J]. Engineering Structures,2006, 28(7):1009-1018. [8] 龙坪. 土木工程结构台风易损性评估研究[D]. 哈尔滨:哈尔滨工业大学, 2008. [9] 韩枫. 特高压输电塔线体系的抗风可靠度研究[D]. 重庆:重庆大学,2012. [10] 李桂青,曹宏,李秋胜. 结构动力可靠度理论及其应用[M]. 北京:地震出版社,1993. [11] 国家能源局. 架空输电线路杆塔结构设计技术规定:DL/T 5154-2012[S].北京:中国计划出版社,2012. [12] BANIK S S, HONG H P, KOPP G A. Assessment of capacity curves for transmission line towers under wind loading[J]. Wind and Structures, 2010, 13(1):1-20. [13] ERBERIK M A, ELNASHAI A S. Fragility analysis of flat-slab structures[J]. Engineering Structures,2004, 26(7):937-948. [14] 欧进萍,段宇博,叶骏. 等效随机静风荷载的模型及其参数确定[J]. 哈尔滨建筑工程学院学报,1994(2):1-8. [15] 王松涛. 现行输电塔设计规范可靠度水准的评估与分析[D]. 重庆:重庆大学, 2014. [16] HUANG M, CHAN C, LOU W, et al. Statistical extremes and peak factors in wind-induced vibration of tall buildings[J]. Journal of Zhejiang University-Science A (Applied Physics and Engineering), 2012, 13(1):18-32. [17] CAO H, LI Q S. Calculation of wind resistant structure safety[J]. China Civil Engineering Journal,1994, 27(1):40-48. [18] KENNEDY R P, CORNELL C A, CAMPBELL R D, et al. Probabilistic seismic safety study of an existing nuclear power plant[J]. Nuclear Engineering and Design, 1980, 59(2):315-338. [19] BENJAMIN J R, ASSOIATES I. Methodology for developing Seismic Fragilities[R]. California:Electric Power Research Institute Inc, 1994. [20] 雷旭,付兴,肖凯,等. 强风作用下输电塔结构不确定性倒塌分析[J]. 中国机电工程学报,2018, 38:266-274.
点击查看大图
计量
- 文章访问数: 113
- HTML全文浏览量: 10
- PDF下载量: 9
- 被引次数: 0