Stability Analysis on Overturning Resistance of Cone-Shaped Foundations for Mountain Wind Turbines
-
摘要: 城郊山区风电可避免平原风电设施占据大量耕地及戈壁地区风电配套大量高压输电线路、成本较高等问题,城郊山区风电建设已成为满足城市用电的有效途径。锥体基础是一种新型的山区风机基础形式,与传统山区风机基础相比,能节约钢筋和混凝土用量,减少基坑开挖量及土方对环境的破坏,提高基础承载力。结合数值模拟和理论方法,对锥体基础基底的脱空面积计算方法、脱空百分比以及风化岩力学参量、基础几何尺寸对基底反力、基础水平位移和倾斜率的影响规律进行探讨;分析基础侧壁设置的橡胶层对卸载后基础回弹率的影响,并建立了锥体基础倾覆稳定性评价标准。Abstract: As wind turbines in mountain areas in outskirts of towns can avoid occupy a large amount of cultivated land for wind turbines on the plains and save a large number of high voltage transmission lines for wind turbines in the deserts, wind turbines in mountain areas in outskirts of towns have become effective ways to meet the electricity demand in urban energy-consumption. The cone-shaped foundation was an innovative type of the mountain wind turbine foundation, which outperformed the traditional wind turbine foundations in mountain areas in decreasing the usage of steel and concrete, in increasing the bearing capacity of foundations, and in reducing the excavation volumes of foundation and the bad effect of backfills on the environment. The calculation method of void areas between bottom surfaces of foundations and the rock masses was proposed. Combining numerical simulations with theoretical methods, the calculatioin method of void areas under bases was studied, and the influences of void ratios, mechanical indexes of weathered rock and geometric sizes of foundations on subgrade reaction, lateral displacement and the tilt rates of foundations were also disccused, respectively. Moreover, the effect of the rubber layer placed the sidewall of foundations on the rebound rates of unloaded foundations was analyzed. The stability of overturning resistance for the cone-shaped foundation was also constructed.
-
[1] 冯凌云,李大勇.砂土中裙式吸力基础水平循环承载特性的影响因素分析[J].工程科学与技术, 2018, 50(6):156-163. [2] 孙一琳.美国各州或将出台新政为风电带来机遇[J].风能, 2019(1):46-47. [3] LI D Y, LI S S, ZHANG Y K. Cone-shaped hollow flexible reinforced concrete foundation (CHFRF):innovative for mountain wind turbines[J]. Soils and Foundations, 2019, 59(5):1172-1181. [4] 李大勇,翟汉波,张雨坤,等.钢筋混凝土空心锥体山区风电柔性基础及其施工方法:中国,201410654765.8[P]. 2015-02-25. [5] LI S S, ZHANG Y K, LI D Y. Capacity of cone-shaped hollow flexible reinforced concrete foundation (CHFRF) in sand under horizontal loading[J]. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/6346590. [6] 门进杰,黄贺鹏,兰涛,等.中美欧风电机组独立基础设计方法对比分析[J].工业建筑, 2018, 48(3):109-116. [7] 中国水电工程顾问集团公司风电标准化委员会.风电机组地基基础设计规定(试行):FD 003-2007[S].北京:中国水利水电出版社, 2007. [8] Det Norske Veritas (DNV). Support Structures for Wind Turbines:DNVGL-ST-0126[S]. Høvik:DNV,2016. [9] Deutsches Institut für Normung (DIN).Ground-verification of the safety of earthworks and foundations:DIN 1054/A1-2009[S]. Berlin:DIN, 2009. [10] CHEN S S, LIAO K H, SHI J Y. A dimensionless parametric study for forced vibrations of foundation-soil systems[J]. Computer Geotechnical, 2016, 76:184-193. [11] ZHANG Z H, TONG R M, LV Z C. The effects of the geometric parameters of a circular shallow foundation on its uplift bearing capacity in loess soil[J]. Acta Geotechnica Slovenica, 2018, 15(2):74-80. [12] 刘梅梅,杨敏,王海军.陆上风力机圆形扩展基础基底反力及冲切特性研究[J].太阳能学报, 2015, 36(5):1130-1135. [13] 阳平,程忠庆,姜海波.横向荷载作用下珊瑚地基中重力式基础的倾斜计算[J].水力发电, 2013, 39(4):22-23. [14] GERVASIO H, REBELO C, MOURA A, et al. Comparative life cycle assessment of tubular wind towers and foundations:Part 2:life cycle analysis[J]. Engineering Structures, 2014, 74:292-299. [15] MATOS R P, PINTO P L, REBELO C S. Improved design of tubular wind tower foundations using steel micropiles[J]. Structure and Infrastructure Engineering, 2016, 12(9):1038-1050. [16] 中国人民共和国国家质量检验检疫总局.风力发电机组设计要求:GB/T 18451.1-2012[S].北京:中国人民共和国国家质量检验检疫总局,2012. [17] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社, 2012. [18] HANNA A, DIAB R. Passive earth pressure of normally and over-consolidated cohesionless soil in terms of critical-state soil mechanics parameters[J]. International Journal of Geomechanics, 2017, 17(1).https://ascelibrary.org/doi/10.1061/(ASCE) GM.1943-5622.0000683. [19] 丁鲁强,李大勇.加筋体与土体界面力学特性试验研究进展综述[J].山东科技大学学报(自然科学版), 2018, 37(3):59-64. [20] 中华人民共和国住房和城乡建设部.工程岩体试验方法标准:GB/T 50266-2013[S].北京:中国计划出版社, 2013. [21] 中华人民共和国住房和城乡建设部.建筑地基基础设计规范:GB 50007-2011[S].北京:中国建筑工业出版社, 2011. [22] 吴杰,上官文斌,潘孝勇.采用超弹性-黏弹性-弹塑性本构模型的橡胶隔振器动态特性计算方法[J].机械工程学报, 2010, 46(14):109-114.
点击查看大图
计量
- 文章访问数: 88
- HTML全文浏览量: 8
- PDF下载量: 1
- 被引次数: 0