Study on Properties of GFRP-Reinforced Concrete Stubs with Hybrid Fibers Under Axial Compression
-
摘要: 为了探寻玻璃纤维增强复合材料(GFRP)筋混杂纤维混凝土轴心受压短柱的破坏机理和设计方法,进行了5根GFRP筋混杂纤维混凝土短柱和1根普通钢筋混凝土短柱轴心受压性能研究,对GFRP筋混杂纤维混凝土轴心受压短柱的破坏形式、纵筋应变、混凝土压应变、极限荷载值等试验结果进行了分析。结果表明:掺入纤维的GFRP筋混凝土轴心受压短柱具有较好的阻裂性能且破坏后可以保持较好的整体性;掺入纤维的GFRP筋混凝土轴心受压短柱均有明显的塑性阶段,纤维可以有效抑制微裂缝扩展,改善混凝土延性;钢纤维掺入使混凝土弹性模量减小,聚乙烯醇(PVA)纤维使混凝土弹性模量增加;混杂纤维能有效提高GFRP筋混凝土短柱极限承载力,GFRP筋混杂纤维混凝土短柱中PVA纤维掺量为0.1%、钢纤维掺量为0.8%时比例最好。Abstract: In order to explore the failure mechanism and design method of GFRP-reinforced concrete stubs with hybrid fibers under axial compression, five GFRP-reinforced concrete stubs with bybrid fibers and an ordinary reinforced concrete stub were studied,the failure mode, longitudinal reinforcement strain, concrete compressive strain and ultimate load value of GFRP hybrid-reinforced concrete stubs under axial compression were analyzed. The results showed that the GFRP-reinforced concrete stubs with hybrid fibers had good crack-resistance performances and good integrity after failure; the GFRP-reinforced concrete stubs with hybrid fibers had an obvious plastic stage under axial compression, and the fibers could effectively restrain from propagation of microcracks and increase the ductility of concrete; the elastic modulus of concrete decreased with the increase of steel fibers, and increased with the increase of PVA fibers; the hybrid fibers could effectively improve the ultimate bearing capacity of GFRP-reinforced concrete stubs, and it was the best proportion that the PVA fiber content was 0.1% and the steel fiber content was 0.8%.
-
Key words:
- GFRP bar /
- hybrid fiber /
- concrete stub /
- axial compression /
- failure mode /
- bearing capacity
-
[1] KOCH G H, BRONGERS M P H, THOMPSON N G, et al. Corrosion cost and preventive strategies in the United States:FHWA-RD-01-156[R]. Washington D.C.:Office of Infrastructure Research and Development, US Department of Transportation, 2002. https://rosap.ntl.bts.gov/view/dot/40697. [2] SHEIKH S A, KHARAL Z. Replacement of steel with GFRP for sustainable reinforced concrete[J].Construction and Building Materials, 2018, 160:767-774. [3] BOUGUESSIR H,HARKATI E,ROKBI M, et al. Mechanical and durability characteristics of externally GFRP reinforced unsaturated polyesterolymer concrete[J]. IOP Conference Series:Materials Science and Engineering,2002,254:22-30. [4] 阮积敏,王柏生,张奕薇.纤维塑料筋的特点及其在混凝土结构中的应用[J].混凝土与水泥制品,2003(1):38-40. [5] 马志强.高强玻璃纤维筋的成型技术试验方法及其应用[J].建井技术,2013(2):18-22. [6] 赵国藩,彭少民,黄承逵,等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999. [7] ABBASS W, KHAN M I, MOURAD S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete[J]. Construction and Building Materials, 2018, 168:556-569. [8] YANG E H, WANG S, YANG Y. Fiber-bridging constitutive law of engineered cementitious composites[J]. Journal of Advanced Concrete Technology, 2008,6(1):181-193. [9] 吴晓春,唐煜,李佳颖.混杂纤维混凝土的力学与抗冲击性能试验研究[J].公路,2015(8):226-229. [10] GULER S, YAVUZ D. Post-cracking behavior of hybrid fiber-reinforced concrete-filled steel tube beams[J].Construction and Building Materials, 2019,205:285-305. [11] 周祎.混杂纤维混凝土的性能研究[D].郑州:郑州大学,2016. [12] 张玉武,晏麓晖,梁乔恒,等.超高分子量聚乙烯纤维混凝土静态力学性能研究[J].工程科学与技术,2017,49(2):257-262. [13] ATTIA K, ALNAHHAL W, ELREFAI A, et al.Flexural behavior of basalt fiber-reinforced concrete slab strips reinforced with BFRP and GFRP bars[J]. Composite Structures, 2019, 211:1-12. [14] 刘传科,刘建忠,崔巩,等. PVA和钢纤维及钢纤维之间混杂对混凝土弯曲韧性的影响[J].混凝土与水泥制品, 2017(3):50-54. [15] 高丹盈,李晗,杨帆.聚丙烯-钢纤维增强高强混凝土高温性能[J].复合材料学报, 2013(1):187-193. [16] 孙丽,杨泽宇,居理宏,等.GFRP筋混凝土柱海水环境受压性能[J].建筑科学与工程学报,2018,35(5):188-193. [17] 涂建维,付金海,高奎,等.方形螺旋箍筋GFRP筋混凝土柱轴压性能研究[J].复合材料科学与工程,2020(8):5-11. [18] 邓宗才,贾鹏星.足尺寸GFRP筋HFRC柱的轴压性能与理论研究[J].北京工业大学学报,2016,42(12):113-119. [19] 孙丽,王世光,侯娜,等.GFRP筋混凝土短柱偏压性能试验研究[J].建筑科学与工程学报,2014(4):23-28.
点击查看大图
计量
- 文章访问数: 76
- HTML全文浏览量: 8
- PDF下载量: 5
- 被引次数: 0