中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印混凝土建造性能的量化模型研究

史庆轩 万胜木

史庆轩, 万胜木. 3D打印混凝土建造性能的量化模型研究[J]. 工业建筑, 2021, 51(6): 16-23. doi: 10.13204/j.gyjzG20120105
引用本文: 史庆轩, 万胜木. 3D打印混凝土建造性能的量化模型研究[J]. 工业建筑, 2021, 51(6): 16-23. doi: 10.13204/j.gyjzG20120105
SHI Qingxuan, WAN Shengmu. STUDY ON QUANTITATIVE MODEL OF BUILDABILITY PERFORMANCE OF 3D PRINTED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 16-23. doi: 10.13204/j.gyjzG20120105
Citation: SHI Qingxuan, WAN Shengmu. STUDY ON QUANTITATIVE MODEL OF BUILDABILITY PERFORMANCE OF 3D PRINTED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 16-23. doi: 10.13204/j.gyjzG20120105

3D打印混凝土建造性能的量化模型研究

doi: 10.13204/j.gyjzG20120105
基金项目: 

国家自然科学基金项目(51878540)。

详细信息
    作者简介:

    史庆轩,男,1963年出生,博士,教授,博士生导师。

    通讯作者:

    万胜木,wanshengmu@xauat.edu.cn。

STUDY ON QUANTITATIVE MODEL OF BUILDABILITY PERFORMANCE OF 3D PRINTED CONCRETE

  • 摘要: 为量化三维(3D)打印混凝土建造性能,根据其在泵送、挤出和沉积过程中的流变特性,建立了基于打印混凝土屈服应力和自重应力作用下的强度破坏模型。该量化模型依据Mohr-Coulomb屈服准则,并结合Tresca破坏理论,适于预测打印结构产生塑性屈服时的失效层数。同时因其假定底层加载速率线性化,故该模型为产生保守预测的下限模型,并通过文献中已有试验数据及模型共同验证了其正确性。又考虑到各层均会在上部沉积层重力作用下产生压缩变形,根据Hook定律预测了打印结束后结构总压缩变形量。
  • [1] 武雷, 杨超一, 万志明. 混凝土打印成型建模技术研究[J]. 工业建筑, 2020, 50(8):22-27.
    [2] 张大旺, 王栋民. 3D打印混凝土材料及混凝土建筑技术进展[J]. 硅酸盐通报, 2015, 34(6):1583-1588.
    [3] 张超, 邓智聪, 侯泽宇, 等. 混凝土3D打印研究进展[J]. 工业建筑, 2020, 50(8):16-21.
    [4] 刘巧玲, 杨钱荣. 聚合物对3D打印建筑砂浆性能影响研究[J]. 建筑材料学报, 2020, 23(5):1206-1211.
    [5] 孙晓燕, 乐凯迪, 王海龙, 等. 挤出形状/尺寸对3D打印混凝土力学性能影响研究[J]. 建筑材料学报, 2020, 23(6):1313-1320.
    [6] PANDA B, MOHAMEL N A, PAUL S C, et al. The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete[J]. Materials, 2019, 12:1-12.
    [7] LE T T, AUSTIN S A, LIM S, et al. Mix Design and Fresh Properties for High-Performance Printing Concrete[J]. Materials and Structures, 2012, 45:1221-1232.
    [8] MA G W, LI Z J, WANG L. Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing[J]. Construction and Building Materials, 2018, 162:613-627.
    [9] 杨钱荣, 赵宗志, 肖建庄, 等. 矿物掺合料与外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021,24(2):412-418.
    [10] 赵仁文. 立井井壁3D打印混凝土配合比优化及其硬化性能研究[D]. 徐州:中国矿业大学, 2019.
    [11] TATERSALL G H, BANFILL P G F. The Rheology of Fresh Concrete[M]. London:Pitman Advanced Publishing Program, 1983.
    [12] ROUSSEL N. Rheological Requirements for Printable Concretes[J]. Cement and Concrete Research, 2018, 112:76-85.
    [13] ROUSSEL N, OVARLEZ S, GARRAULT S, et al. The Origins of Thixotropy of Fresh Cement Pastes[J]. Cement and Concrete Research, 2012, 42:148-157.
    [14] ROUSSEL N. A Thixotropy Model for Fresh Fluid Concretes:Theory, Validation and Applications[J]. Cement and Concrete Research, 2006, 36:1797-1806.
    [15] KRUGER J, ZERANKA S, ZIJL G V. 3D Concrete Printing:A Lower Bound Analytical Model for Buildability Performance Quantification[J]. Automation in Construction, 2019, 106:1-14.
    [16] WOLFS R J M, BOS F P, SALET T A M. Early Age Mechanical Behaviour of 3D Printed Concrete:Numerical Modelling and Experimental Testing[J]. Cement and Concrete Research, 2018, 106:103-116.
    [17] PERROT A, RANGEARD D, PIERRE A. Structural Built-Up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques[J]. Materials and Structures, 2016, 49:1213-1220.
    [18] SCHUTTER G D, FEYS D. Pumping of Fresh Concrete:Insights and Challenges[J]. RILEM Technical Letters, 2016, 1:76-80.
    [19] MECHTCHERINE V, BOS F P, PERROT A, et al. Extrusion-Based Additive Manufacturing with Cement-Based Materials-Production Steps, Processes, and Their Underlying Physics:A Review[J]. Cement and Concrete Research, 2020, 132:1-14.
    [20] SALOUSTROS S, PELA L, CERVERA M. A Crack-Tracking Technique for Localized Cohesive-Frictional Damage[J]. Engineering Fracture Mechanics, 2015, 150:96-114.
    [21] WOLFS R J M, BOS F P, SALET T A M. Triaxial Compression Testing on Early Age Concrete for Numerical Analysis of 3D Concrete Printing[J]. Cement and Concrete Composites, 2019, 104:1-12.
    [22] JAYATHILAKAGE R, RAJEEV P, SANJAYAN J. Yield Stress Criteria to Assess the Buildability of 3D Concrete Printing[J]. Construction and Building Materials, 2020, 240:1-15.
    [23] KRUGER J, CHO S, ZERANKA S, et al. 3D Concrete Printer Parameter Optimisation for High Rate Digital Construction Avoiding Plastic Collapse[J]. Composites Part B:Engineering, 2020, 183:1-11.
    [24] METTLER L K, WITTEL F K, FLATT R J, et al. Evolution of Strength and Failure of Scc During Early Hydration[J]. Cement and Concrete Research, 2016, 89:288-296.
    [25] PANDA B, LIM J H, TAN M J. Mechanical Properties and Deformation Behaviour of Early Age Concrete in the Context of Digital Construction[J]. Composites Part B:Engineering, 2019, 165:563-571.
  • 加载中
计量
  • 文章访问数:  160
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 网络出版日期:  2021-10-27

目录

    /

    返回文章
    返回