Research Progress and Prospect of Fiber-Recycled Concrete
-
摘要: 纤维与再生混凝土的组合使用改善了再生混凝土的自身缺陷,强化了其力学与耐久性能,通过文献分析,从纤维类型、改性效果等方面介绍纤维再生混凝土的研究现状。常见的钢纤维在2%体积掺量掺量下,可分别将再生混凝土的抗压、劈拉及抗折强度较未掺加纤维时40.1%、124.6%和286.1%,同时提高再生混凝土的密实性,提升疲劳寿命;聚丙烯纤维可有效控制裂缝开展,提高抗断裂性能,1.2%的体积掺量下,可将断裂韧度、断裂能较未掺加纤维时分别提升71.13%、330.77%,且在高温中可熔化,减轻爆裂现象。玄武岩纤维在优化力学性能的同时,对再生混凝土抗氯离子渗透性能存在良好的改善作用,3%体积掺量的玄武岩纤维的提升效果最为显著。此外,再生纤维可由废弃地毯、废旧轮胎等通过人工裁剪或热解及低温还原等工艺加工而成,其性能可达一般纤维性能指标,0.12%体积掺量的再生聚丙烯纤维可使再生混凝土抗拉强度较未掺加纤维时提升12.34%。最后,对各纤维合适的改性性能进行了讨论,对再生纤维以及各纤维的混杂应用进行了展望,为纤维再生混凝土的进一步研究和应用提供基础。Abstract: The combined use of fibers and recycled concrete improves the defects of recycled concrete and strengthens its mechanical and durability properties. The paper introduced the research status of fibers-recycled concrete from the aspects of fiber types and modification effects through literature review. Comparison with common recycled concrete, the common steel fiber could increase the compressive, splitting and flexural strength of recycled concrete by 40.1%, 124.6% and 286.1% respectively with the volume content of could 2%, while improving the compactness of recycled concrete and its fatigue life. Similarly, the polypropylene fiber could effectively control the fracture development and improve the fracture performance of recycled concrete. With the 1.2% volume content of it, the fracture toughness and fracture energy could be increased by 71.13% and 330.77% respectively. In addition, the spalling of recycled concrete under high temperatures could be reduced by the fusion of polypropylene fibers. And also, the basalt fiber had a good effect on improving the chloride ion permeability of recycled concrete while optimizing its mechanical properties, the 3% volume content of it had the most significant improvement effect. Moreover, the recycled fiber could be made from discarded carpets and tires through manual cutting, pyrolysis, low-temperature reduction and other processes, and its performance could reach the level of general fibers. The compressive strength of the recycled concrete with the 0.12% volume content of recycled polypropylene steel fibers could be increased by 12.34% comparison with common recycled concrete. Furthermore, based on the discussion of appropriate modification properties for each fiber, the prospects of the recycled fiber and the hybrid application of fibers were presented, which would benefited further research and application of the fiber-recycled concrete.
-
Key words:
- recycled concrete /
- fiber-recycled concrete /
- mechanical properties /
- durability
-
[1] 陈尚权,高越青,梁超锋,等.透水再生骨料混凝土研究进展[J].硅酸盐通报,2020, 39(1):156-162. [2] 魏英烁,姬国强,胡力群.建筑垃圾回收再利用研究综述[J].硅酸盐通报, 2019,38(9):147-151. [3] XIAO J Z. Recycled aggregate concrete structures[M]. Berlin:Springer-Verlag, 2018. [4] 吴贤国,郭劲松,李惠强,等.建筑废料的再生利用研究[J].建材技术与应用,2004(1):21-23. [5] 肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008. [6] LOTFY A, AL-FAYEZ M. Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate[J]. Cement&Concrete Composites, 2015, 61:36-43. [7] 陈欣,郑建岚.再生粉体对水泥浆体水化特性的影响[J].硅酸盐通报,2016,35(8):2530-2536,2542. [8] MAO X, QU W, ZHU P, et al. Influence of recycled powder on chloride penetration resistance of green reactive powder concrete[J]. Construction and Building Materials, 2020, 251.DOI: 10.1016/j.conbuildmat.2020.119049. [9] 王玉梅,邓志恒,肖建庄,等.再生混凝土压-剪应力下受力性能与破坏准则[J].建筑结构学报,2020,41(增刊1):373-380. [10] 祝雯,任俊.再生骨料及再生混凝土技术的研究进展[J].广州建筑, 2008, 36(5):17-22. [11] ZHOU C, CHEN Z. Mechanical properties of recycled concrete made with different types of coarse aggregate[J]. Construction&Building Materials, 2017, 134:497-506. [12] THOMAS J, THAICKAVIL N N, WILSON P M. Strength and durability of concrete containing recycled concrete aggregates[J]]. Journal of Building Engineering,2018,19:349-365. [13] 肖建庄,李佳彬,兰阳.再生混凝土技术研究最新进展与评述[J].混凝土,2003(10):17-20,57. [14] 肖建庄,范玉辉,林壮斌.再生细骨料混凝土抗压强度试验[J].建筑科学与工程学报,2011,28(4):26-29. [15] 葛智,刘相阳,李秋义,等.再生细骨料自密实混凝土性能研究[J].建筑结构,2019,49(增刊1):672-676. [16] 王健,孟秦倩.再生骨料混凝土基本性能的试验研究[J].水利与建筑工程学报, 2004(2):47-49. [17] 马静,王振波.再生混凝土的基本性能研究[J].混凝土与水泥制品,2012(3):18-21. [18] 陈晋华.再生骨料对再生混凝土基本性能的影响[J].长沙大学学报,2015,29(5):29-31. [19] 肖建庄,雷斌.再生混凝土耐久性能研究[J].混凝土,2008(5):83-89. [20] 李佳彬,肖建庄,黄健.再生粗骨料取代率对混凝土抗压强度的影响[J].建筑材料学报, 2006,9(3):297-301. [21] OTSUKI N, MIYAZATO S I, YODSUDJAI W. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete[J]. Journal of Materials in Civil Engineering, 2003, 15(5):443-451. [22] 韩帅,李秋义,张修勤,等.再生粗骨料品质和取代率对再生混凝土抗冻性能影响[J].中国海洋大学学报(自然科学版),2017,47(1):96-104. [23] 汪振双,谭晓倩.钢纤维再生粗集料混凝土的力学性能和抗冻性研究[J].硅酸盐通报,2016,35(4):1184-1187. [24] 刘慈,崔佳伟,邓佳卓,等.不同掺入率混杂钢纤维对再生混凝土性能的影响[J].混凝土与水泥制品,2016(12):53-56. [25] 吴全强,肖泽林,李舵.钢纤维增强再生混凝土力学及收缩性能试验研究[J].湖南交通科技,2020,46(2):45-48. [26] 杨粉,陈爱玖,王静.不同钢纤维对再生混凝土基本力学性能的影响[J].新型建筑材料,2013,40(2):44-46. [27] GAO D, ZHANG L, NOKKEN M. Compressive behavior of steel fiber reinforced recycled coarse aggregate concrete designed with equivalent cubic compressive strength[J]. Construction&Building Materials, 2017, 141(15):235-244. [28] 秦道天.钢纤维再生混凝土弯曲疲劳性能研究[J].混凝土与水泥制品, 2016, 238(2):91-94. [29] ERDEM S, DAWSON A R, THOM N H. Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibres[J]. Construction&Building Materials, 2011, 25(10):4025-4036. [30] 史宇.钢纤维再生混凝土抗冲击性能的试验研究[J].科技资讯,2012(7):39,42. [31] HANUMESH B, HARISH B, VENKATA R N. Influence of polypropylene fibres on recycled aggregate concrete[J]. Materials Today:Proceedings, 2018, 5(1):1147-1155. [32] 姚艳芳.聚丙烯纤维对再生混凝土力学性能和干缩率的影响[J].功能材料,2020,51(7):7136-7140,7147. [33] 霍俊芳,白笑笑,姜鹏飞,等.钢纤维和聚丙烯纤维再生混凝土力学性能研究[J].混凝土,2019(8):92-95,99. [34] 何文昌,孔祥清,高化东,等.高掺量聚丙烯纤维再生混凝土力学性能及微观结构研究[J].混凝土,2020(1):82-86. [35] 孔祥清,高化东,刚建明,等.钢-聚丙烯混杂纤维再生混凝土断裂性能研究[J].混凝土, 2018(10):79-83,86. [36] KODUR V K R, CHENG F P, WANG T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns[J]. Journal of Structural Engineering, 2003, 129(2):253-259. [37] CHEN B, LIU J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures[J]. Cement&Concrete Research, 2004, 34(6):1065-1069. [38] 袁少林.混杂纤维再生混凝土高温后力学性能试验研究[D].阜新:辽宁工业大学,2018. [39] 全晓旖,刘康宁,王社良,等.玄武岩纤维RAC基本力学性能试验研究[J].混凝土, 2019(6):52-55. [40] 田凯.玄武岩纤维对再生混凝土力学性能的影响研究[J].新型建筑材料,2019,46(6):22-24,103. [41] CENTONZE G, LEONE M, AIELLO M A. Steel fibers from waste tires as reinforcement in concrete:a mechanical characterization[J]. Construction&Building Materials, 2012, 36:46-57. [42] 周静海,康天蓓,王凤池,等.废弃纤维再生混凝土劈裂抗拉强度尺寸效应试验[J].沈阳建筑大学学报(自然科学版),2018,34(6):1036-1044. [43] 周静海,张东,杨永生.废弃纤维再生混凝土梁受弯性能试验[J].沈阳建筑大学学报(自然科学版),2013,29(2):290-296. [44] 杨娟,朋改非,税国双.再生钢纤维增韧超高性能混凝土的力学性能[J].复合材料学报,2019, 36(8):1949-1956. [45] LEONE M,CENTONZE G, COLONNA D, et al. Experimental study on bond behavior in fiber-reinforced concrete with low content of recycled steel fiber[J]. Journal of Materials in Civil Engineering, 2016, 28(9). DOI:10.1061/(ASCE) MT.1943-5533.0001534. [46] 邓宗才,王辉,王宏君.生态钢纤维活性粉末混凝土力学特性试验与分析[J].中国科技论文, 2017, 12(13):1482-1487. [47] SKARZYNSKI L, SUCHORZEWSKI J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using digital image correlation technique and X-ray micro computed tovmography[J]. Construction and Building Materials, 2018, 183:283-299. [48] 杜园芳,王社良,余滨杉,等.混杂再生纤维对再生混凝土强度的影响研究[J].工业建筑, 2013, 43(11):12-15. [49] 闫春岭,高丹盈,胡春生,等.钢纤维再生粗骨料混凝土碳化试验[J].土木工程与管理学报,2017,34(2):64-67,72. [50] KOUSHKBAGHI M, KAZEMI M J, MOSAVI H, et al. Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate[J]. Construction and Building Materials, 2019, 202:266-275. [51] RICHARDSON A, COVENTRY K, BACON J. Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete[J]. Journal of Cleaner Production, 2011, 19(2/3):272-277. [52] 陈晨.纤维砖骨料再生混凝土性能试验研究[D].阜新:辽宁工业大学,2016. [53] PEARSON M, DONCHEV T, SALAZAR J. Long-term behaviour of prestressed basalt fibre reinforced polymer bars[J]. Procedia Engineering, 2013, 54:261-269. [54] 卫志盛,袁书成,董江峰,等.玄武岩纤维再生混凝土硫酸盐侵蚀后力学性能试验研究[J].混凝土与水泥制品, 2018, 271(11):64-69. [55] NIU D, HUANG D, FU Q. Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers[J]. Advances in Structural Engineering, 2019, 22(10):2278-2288. [56] 姬枫.玄武岩纤维对再生混凝土力学及耐久性能影响研究[J].粉煤灰综合利用,2020,34(3):85-87,140. [57] 周静海,岳秀杰,白姝君.废弃纤维再生混凝土的氯离子抗渗性能[J].济南大学学报(自然科学版),2013,27(3):320-324. [58] 李坤.纤维增强再生骨料混凝土基本力学性能试验与分析[J].混凝土与水泥制品, 2019, 274(2):64-66. [59] 孔祥清,何文昌,周聪,等.混杂掺入钢/聚丙烯纤维再生混凝土力学性能及抗冲击性能试验研究[J].建筑科学, 2020, 36(3):94-99. [60] PADHAN R K, GUPTA A A, BADONI R P, et al. Poly (ethylene terephthalate) waste derived chemicals as an antistripping additive for bitumen;an environment friendly approach for disposal of environmentally hazardous material[J]. Polymer Degradation&Stability, 2013, 98(12):2592-2601. [61] HAMOUSH S, ABU-LEBDEH T, CUMMINS T. Deflection behavior of concrete beams reinforced with PVA micro-fibers[J]. Construction&Building Materials, 2010, 24(11):2285-2293. [62] LU Z, YAO J, LEUNG C K Y. Using graphene oxide to strengthen the bond between PE fiber and matrix to improve the strain hardening behavior of SHCC[J]. Cement and Concrete Research, 2019, 126.DOI: 10.1016/j.cemconres,2019.105899. [63] 满都拉,曹美琪.PE纤维透水混凝土的强度与韧性试验研究[J].硅酸盐通报,2016(10):3417-3421. [64] 孙呈凯,金宝宏,李家俊,等.PVA纤维再生混凝土力学性能正交试验研究[J].广西大学学报(自然科学版),2018,43(4):1569-1575. [65] 张博明,李嘉,李煦.混杂纤维复合材料最优纤维混杂比例及其应用研究进展[J].材料工程,2014(7):107-112.
点击查看大图
计量
- 文章访问数: 297
- HTML全文浏览量: 60
- PDF下载量: 8
- 被引次数: 0