Minimum Plane Dimensions of Double-Layer Cylindrical Latticed Shells Considering Traveling Wave Effect
-
摘要: 为了探究大跨空间结构需考虑行波效应的最小平面尺寸,采用时程分析法对不同平面尺寸双层柱面网壳进行多点输入与一致输入的对比分析,研究了一致输入下地震内力峰值不小于10 kN且行波效应系数不小于1.1的特殊杆件的分布规律。结果表明:特殊杆件主要出现在上弦纵杆中,改变结构平面尺寸会影响特殊杆件的数量和比例;当跨度达到60 m且长度达到90 m时,上弦纵杆中特殊杆件占比达到10%,继续增大结构长度会使特殊杆件比例增大,继续增加结构跨度则会使特殊杆件比例减小。可见,跨度60 m与长度90 m是需对此类结构上弦纵杆考虑行波效应的最小平面尺寸。Abstract: In order to research the minimum plane dimensions of long-span spatial structures that considering traveling wave effect, the time-history analysis method was used to investigate the differences among double-layer cylindrical latticed shells with different plane dimensions under multiple-support excitation and single excitation by discussing the distribution of special members whose peak internal forces under single excitation were greater than 10kN and traveling wave effect coefficient were greater than 1.1. The results showed that changing the structural span or length would lead to the amount or percentage of special members changed, which were concentrated in longitudinal members at the top chord, the percentage of special members was up to 10% when the span of reduce the percentage of special members reached 60 m and the length reached 90 m. Increasing the lergth of structure would increase the proportion of special members, while increastring the span would decrease the proportion. It was concluded that 60 m of the span and 90 m of the length were the minimum plane dimensions of this kind of structure that considering the traveling wave effect of longitudinal members at the top chord.
-
[1] 曹资,张毅刚,薛素铎,等. 20年来中国空间结构分析进展及应用[J].建筑结构, 2014, 44(7):27-32. [2] 薛素铎,张毅刚,曹资,等.中国空间结构三十年抗震研究的发展和展望[J].工业建筑, 2013,43(6):105-116. [3] 薛素铎,单明岳,李雄彦,等.多点激励的高位隔震单层柱面网壳振动台试验[J].世界地震工程, 2017, 33(3):24-33. [4] 支旭东,范峰,乔达.超大跨网壳结构在强震作用下的复杂效应影响研究[J].建筑结构学报, 2016, 37(9):91-98. [5] 王俊,宋涛,赵基达,等.中国空间结构的创新与实践[J].建筑科学, 2018, 34(9):1-11. [6] 王秋杰,曾锃,张俊发,等.行波效应对大跨空间结构竖向构件的影响分析[J].工程抗震与加固改造, 2018, 40(4):59-63,52. [7] 范峰,支旭东.网壳结构强震失效机理关键理论问题[J].工业建筑, 2015,45(1):10-15. [8] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社, 2016. [9] 苏涛,秦乃兵,王田增.超长网壳结构地震响应分析[J].河北联合大学学报(自然科学版), 2015, 37(2):80-88,105. [10] 黄湛.多维多点输入下超长网架结构的地震响应特征分析[C]//第十届全国现代结构工程学术研讨会论文集.天津:2010:799-805. [11] 李旭淳.大跨度双拱支承钢结构的多维多点地震响应分析[D].广州:华南理工大学, 2014. [12] ECS. Design of structures for earthquake:EN 1998-1:2004[S]. Europe:European Committee for Standardization, 2004. [13] 于海英,江汶乡,解全才,等.近场数字强震仪记录误差分析与零线校正方法[J].地震工程与工程振动, 2009(6):1-12. [14] 柯世堂,张令心,赵林.多点输入下大跨空间网格结构地震响应分析[J].山东理工大学学报(自然科学版), 2010(1):1-5. [15] 梁嘉庆.大跨空间结构在非一致地震输入下的弹性响应分析[D].南京:东南大学, 2004. [16] 秦俊.行波效应下超长单层柱面网壳抗震性能分析及试验研究[D].北京:北京工业大学, 2012. [17] 顾镇媛,唐天栎,徐益康,等.罕遇地震下大跨隔震结构随机地震响应[J].科学技术与工程, 2019, 19(30):281-287.
点击查看大图
计量
- 文章访问数: 165
- HTML全文浏览量: 20
- PDF下载量: 6
- 被引次数: 0