CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS
-
摘要: 河床深切槽段的冲刷淤积使得越江隧道纵向荷载十分复杂,影响隧道纵向变形。基于南京地铁越江隧道工程,研究不同冲刷深度、深泓位置引起的盾构隧道纵向变形行为。采用有限元建立计算模型,得到不同工况下隧道纵向的变形情况,根据变形曲线计算隧道的曲率半径和隧道环缝的张开量。结果表明:1)变形后隧道的曲率半径及环缝最大张开量与冲刷深度及冲刷范围相关,冲刷的范围越大,隧道的回弹量也越大,相应的曲率半径也越小,环缝张开量越大;冲刷深度越大,曲率半径越小,环缝张开量越大。2)环缝最大张开量位置在深泓位置附近。3)在隧道变坡点附近,环缝张开量明显大于前后直线段的张开量,设计时应尽量避免变坡点位置在深泓摆幅范围内。Abstract: The scour and deposition in deep channel sections of a river bed make the longitudinal loads acting on river-crossing tunnels complicated and affect the longitudinal deformation of tunnels. Based on the river-crossing tunnel project of Nanjing Metro, the longitudinal deformation properties of the shield tunnel caused by different scoured depth and thalweg locations were studied. Firstly, the finite element model was constructed to obtain the longitudinal deformation of the tunnel in different scoured conditions. According to the deformation curve, the curvature radius of the tunnel and the opening widths between joints were calculated. The results showed that:1) The radius of curvature of the tunnel and the maximum opening widths of segment joints were related to the scoured depth and range. The larger the scoured range, the greater the rebound of the tunnel and the smaller the corresponding curvature radius, the larger the opening between segements. 2) The position of the maximum opening width was near the thalweg. 3) In the vicinity of change point for tunnel slopes, the opening widths of segments were obviously larger than that of constant slope sections. Therefore, the locations of changing slope for tunnels should be away from the zones of depth variation for thalwegs in design.
-
Key words:
- shield tunnel /
- longitudinal deformation /
- riverbed scour /
- opening width
-
[1] 张常委, 梁诏斌, 张志强, 等.地层渗透系数对隧道纵向结构的影响研究[J]. 现代隧道技术, 2008, 45(增刊1):259-261. [2] 沈林冲, 钟小春, 秦建设, 等.钱塘江盾构越江隧道最小覆土厚度的确定[J]. 岩土力学, 2011, 32(1):111-115. [3] LI Y, ZHEN D C, JUN T. Numerical Simulation of Longitudinal Settlement of Shield Tunnel in the Coastal City[J]. Shanghai Marine Georesources & Geotechnology, 2017, 35(3):365-370. [4] 张勇, 马金荣, 陶祥令, 等.地面堆载诱发下既有盾构隧道纵向变形的解析解[J]. 隧道建设(中英文), 2020, 40(1):66-74. [5] 周宁, 袁勇.越江盾构隧道纵向变形曲率与管环渗漏的关系[J]. 同济大学学报(自然科学版), 2009, 37(11):1446-1451, 1501. [6] 李雪, 霍鹏, 周顺华, 等.盾构隧道双道密封垫防水能力及失效模式研究[J]. 铁道科学与工程学报, 2020, 17(1):159-166. [7] 张金龙, 苟长飞, 叶飞.大断面跨海盾构隧道结构设计与参数分析[J]. 现代隧道技术, 2020, 57(2):61-67. [8] WU H N, SHEN S L, LIAO S M, et al. Longitudinal Structural Modelling of Shield Tunnels Considering Shearing Dislocation Between Segmental Rings[J]. Tunnelling and Underground Space Technology, 2015, 50:317-323. [9] 张军, 张翅翔.河床冲淤引起过江盾构隧道纵向变形的研究[J]. 隧道建设, 2009, 29(2):152-156. [10] 陈拴, 吴怀娜, 沈水龙, 等.盾构隧道纵向结构变形模式及理论模型[J]. 土木工程学报, 2019, 52(增刊1):85-92.
点击查看大图
计量
- 文章访问数: 120
- HTML全文浏览量: 18
- PDF下载量: 3
- 被引次数: 0