中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复材-铝合金双槽形截面层合板梁承载性能预测研究

黄腾 张冬冬 黄亚新 林渊 张釜恺 袁嘉欣

黄腾, 张冬冬, 黄亚新, 林渊, 张釜恺, 袁嘉欣. 碳纤维复材-铝合金双槽形截面层合板梁承载性能预测研究[J]. 工业建筑, 2021, 51(6): 198-205,197. doi: 10.13204/j.gyjzG20111816
引用本文: 黄腾, 张冬冬, 黄亚新, 林渊, 张釜恺, 袁嘉欣. 碳纤维复材-铝合金双槽形截面层合板梁承载性能预测研究[J]. 工业建筑, 2021, 51(6): 198-205,197. doi: 10.13204/j.gyjzG20111816
HUANG Teng, ZHANG Dongdong, HUANG Yaxin, LIN Yuan, ZHANG Fukai, YUAN Jiaxin. RESEARCH ON METHODS FOR PREDICTING BEARING PERFORMANCE OF CFRP-ALUMINUM LAMINATE BEAM WITH DOUBLE-CHANNEL CROSS SECTION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 198-205,197. doi: 10.13204/j.gyjzG20111816
Citation: HUANG Teng, ZHANG Dongdong, HUANG Yaxin, LIN Yuan, ZHANG Fukai, YUAN Jiaxin. RESEARCH ON METHODS FOR PREDICTING BEARING PERFORMANCE OF CFRP-ALUMINUM LAMINATE BEAM WITH DOUBLE-CHANNEL CROSS SECTION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 198-205,197. doi: 10.13204/j.gyjzG20111816

碳纤维复材-铝合金双槽形截面层合板梁承载性能预测研究

doi: 10.13204/j.gyjzG20111816
基金项目: 

国家自然科学基金项目(51708552);江苏省自然科学基金项目(BK20170752)。

详细信息
    作者简介:

    黄腾,男,1988年出生,博士研究生。

    通讯作者:

    张冬冬,男,1986年出生,副教授,博士,zhangdodo1986@sohu.com。

RESEARCH ON METHODS FOR PREDICTING BEARING PERFORMANCE OF CFRP-ALUMINUM LAMINATE BEAM WITH DOUBLE-CHANNEL CROSS SECTION

  • 摘要: 为了研究具有双槽形异型截面的碳纤维增强铝合金层合板梁的弯曲承载性能,采用压力模压热固化成形工艺制备了两组碳纤维铺层结构分别为[0°/90°/0°]和[45°/0°/-45°]的双槽形截面层合板梁构件,进行了四点弯曲试验,获得了不同试件的极限弯曲荷载和破坏模式。针对二维Hashin失效准则的局限性,采用FORTRAN语言编写了适用于ABAQUS/Explicit显式分析算法的VUMAT子程序,实现了基于三维Hashin失效准则的CFRP层渐进损伤的数值模拟分析功能,对双槽形层合板梁的承载性能和破坏形式进行了分析。同时,基于经典层合板理论提出了一种预测碳纤维增强铝合金层合板梁安全承载力的理论方法。试验、数值模拟与理论计算结果的比较表明,所提出的安全承载力计算方法可用于预测碳纤维增强铝合金槽形截面层合板梁的安全承载力,可应用于异形截面层合板梁构件的设计。
  • [1] BRITTANI R R, ASHLEY P T. Portable and Rapidly Deployable Bridges:Historical Perspective and Recent Technology Developments[J]. Journal of Bridge Engineering, 2013, 18:1074-1085.
    [2] ZHANG D D, LYU Y R, ZHAO Q L, et al. Development of Lightweight Emergency Bridge Using GFRP-Metal Composite Plate-Truss Girder[J]. Engineering Structures, 2019, 196. DOI: 10.1016/j.engstruct.2019.109291.
    [3] ZHANG D D, YUAN J X, ZHAO Q L, et al. Static Performance of A New GFRP-Metal String Truss Bridge Subjected to Unsymmetrical Loads[J]. Steel and Composite Structures, 2020, 35(5):641-657.
    [4] SINMAZÇELIK T, AVCU E, BORA M O, et al. A Review:Fibre Metal Laminates,Background, Bonding Types and Applied Test Methods[J]. Materials and Design, 2011, 32:3671-3685.
    [5] DING Z R, WANG H Y, LUO J M, et al. A Review on Forming Technologies of Fibre Metal Laminates[J]. International Journal of Lightweight Materials and Manufacture, 2020, 4(1):110-126.
    [6] KAVITHA K, VIJAYAN R, SATHISHKUMAR T. Fibre-Metal Laminates:A Review of Reinforcement and Formability Characteristics[J]. Materials Today:Proceedings, 2020, 22:601-605.
    [7] CAPRINO G, IACCARINO P, LAMBOGLIA A. The Effect of Shear on the Rigidity in the Three Point Bending of Unidirectional CFRP Laminates Made of T800H/3900-2[J]. Composite Structures, 2009, 88:360-376.
    [8] DONG C S, JAYAWARDENA H, DAVIES I J. Flexural Properties of Hybrid Composites Reinforced by S-2 Glass and T700S Carbon Fibres[J]. Composites Part B:Engineering, 2012, 43:573-581.
    [9] ALHASHMY H A, NGANBE M. Laminate Squeeze Casting of Carbon Fiber Reinforced Aluminum Matrix Composites[J]. Materials & Design, 2015, 67:154-158.
    [10] XUE J, WANG W X, ZHANG J Z, et al. Progressive Failure Analysis of the Fiber Metal Laminates Based on Chopped Carbon Fiber Strands[J]. Journal of Reinforced Plastics and Composites, 2015, 34(5):364-376.
    [11] DHALIWAL G S, NEWAZ G M. Experimental and Numerical Investigation of Flexural Behavior of Carbon Fiber Reinforced Aluminum Laminates[J]. Journal of Reinforced Plastics and Composites, 2016, 35(12):945-956.
    [12] ZAKARIA AZ, SHELESH-NEZHAD K, CHAKHERLOU TN, et al. Effects of Aluminum Surface Treatments on the Interfacial Fracture Toughness of Carbon-Fiber Aluminum Laminates[J]. Engineering Fracture Mechanics, 2017, 172:139-151.
    [13] KHAN F, QAYYUM F, ASGHAR W, et al. Effect of Various Surface Preparation Techniques on the Delamination Properties of Vacuum Infused Carbon Fiber Reinforced Aluminum Laminates (CARALL):Experimentation and Numerical Simulation[J]. Journal of Mechanical Science and Technology, 2017, 31(11):5265-5272.
    [14] OSAPIUK M, BIENIAS J, SUROWSKA B. Analysis of the Bending and Failure of Fiber Metal Laminates Based on Glass and Carbon Fibers[J]. Science and Engineering of Composite Materials, 2018, 25(6):1095-1106.
    [15] XU R H, HUANG YX, LIN Y, et al. In Plane Flexural Behaviour and Failure Prediction of Carbon Fibre Reinforced Aluminium Laminates[J]. Journal of Reinforced Plastics and Composites, 2017, 36(18):1384-1399.
    [16] LIN Y, HUANG Y X, HUANG T, et al. Characterization of Progressive Damage Behaviour and Failure Mechanisms of Carbon Fiber Reinforced Aluminium Laminates Under Three-Point Bending[J]. Thin-Walled Structures, 2019, 135:494-506.
    [17] 毛才文,莫凡,彭亚南, 等. 碳纤维增强环氧树脂复合材料层合板结构及间隙尺寸对铆接性能的影响[J]. 复合材料学报, 2018, 35(12):3280-3297.
    [18] ZHANG Y H, YAN L L, MIAO M H, et al. Microstructure and Mechanical Properties of Z-Pinned Carbon Fiber Reinforced Aluminum Alloy Composites[J]. Materials & Design, 2015, 86:872-877.
    [19] KIM J G, KIM H C, KWON J B, et al. Tensile Behavior of Aluminum/Carbon Fiber Reinforced Polymer Hybrid Composites at Intermediate Strain Rates[J]. Journal of Composite Materials, 2015, 49:1179-1193.
    [20] ANDRÉ N M, GOUSHEGIR S M, SANTOS J F, et al. Friction Spot Joining of Aluminum Alloy 2024-T3 and Carbon-Fiber-Reinforced Poly(Phenylene Sulfide) Laminate with Additional PPS Film Interlayer:Microstructure, Mechanical Strength and Failure Mechanisms[J]. Composites Part B:Engineering, 2016, 94(1):197-208.
    [21] LIN Y, HUANG Y X, HUANG T, et al. Open-Hole Tensile Behavior and Failure Prediction of Carbon Fibre Reinforced Aluminium Laminates[J]. Polymer Composites, 2018, 39:4123-4138.
    [22] BOTELHO E C, SILVA R A, PARDINI LC, et al. Evaluation of Adhesion of Continuous Fibe-Epoxy Composite/Aluminum Laminates[J]. Journal of Adhesion Science and Technology, 2004, 18:1799-1813.
    [23] MAKEEV A. Interlaminar Shear Fatigue Behavior of Glass/epoxy and Carbon/Epoxy Composites[J]. Composites Science and Technology, 2013, 80:93-100.
    [24] LI X, GAO W, LIU W. Post-Buckling Progressive Damage of CFRP Laminates with a Large-Sized Elliptical Cutout Subjected to Shear Loading[J]. Composite Structures, 2015, 128:313-321.
    [25] CORTES P, CANTELL W J. The Tensile and Fatigue Properties of Carbon Fiber-Reinforced Peek-Titanium Fiber-Metal Laminates[J]. Journal of Reinforced Plastics and Composites, 2004, 23:1615-1623.
    [26] LIU P F, CHU J K, LIU Y L, et al. A Study on the Failure Mechanisms of Carbon Fiber/Epoxy Composite Laminates Using Acoustic Emission[J]. Materials & Design, 2012, 37:228-235.
    [27] MONTESANO J, FAWAZ Z, BOUGHERARA H. Use of Infrared Thermography to Investigate the Fatigue Behavior of a Carbon Fiber Reinforced Polymer Composite[J]. Composite Structures, 2013, 97:76-83.
    [28] STOLL M M, WEIDENMANN K A. Fatigue of Fiber-Metal-Laminates with Aluminum Core, CFRP Face Sheets and Elastomer Interlayers (FMEL)[J]. International Journal of Fatigue, 2018, 107:110-118.
    [29] BIENIAS J, JAKUBCZAK P. Low Velocity Impact Resistance of Aluminium/Carbon-Epoxy Fiber Metal Laminates[J]. Composite Theory and Practice, 2012, 12:193-197.
    [30] WANG B, XIONG J, WANG X J, et al. Energy Absorption Efficiency of Carbon Fiber Reinforced Polymer Laminates Under High Velocity Impact[J]. Materials & Design, 2013, 50:140-148.
    [31] MORINIERE F D, ALDERLIESTEN R C, SADIGHI M, et al. An Intergrated Study on the Low-Velocity Impact Response of the GLARE Fiber-Metal Laminate[J]. Composite Structures, 2013, 100:89-103.
    [32] BIENIAS J, JAKUBCZAK P, SUROWSKA B, et al. Low-Energy Impact Behaviour and Damage Characterization of Carbon Fibre Reinforced Polymer and Aluminium Hybrid Laminates[J]. Archives of Civil and Mechanical Engineering, 2015, 15:925-932.
    [33] YU G C, WU L Z, MA L, et al. Low Velocity Impact of Carbon Fiber Aluminum Laminates[J]. Composite Structures, 2015, 119:757-766.
    [34] JAROSLAW B, BARBARA S, PATRYK J. The Comparison of Low-Velocity Impact Resistance of Aluminum/Carbon and Glass Fiber Metal Laminates[J]. Polymer Composites, 2016, 37:1056-1063.
    [35] KABOGLU C, MOHAGHEGHIAN I, ZHOU J, et al. High-Velocity Impact Deformation and Perforation of Fibre Metal Laminates[J]. Journal of Materials Science, 2017, 534:4209-4228.
    [36] DHALIWAL G S, NEWAZ G M. Compression After Impact Characteristics of Carbon Fiber Reinforced Aluminum Laminates[J]. Composite Structures, 2017, 160:1212-1224.
    [37] 沈勇,柯俊,吴震宇, 等. 不同编织角碳纤维增强聚合物复合材料-Al方管的吸能特性[J]. 复合材料学报, 2020, 37(3):591-600.
    [38] SHIN D K, KIM H C, LEE J J. Numerical Analysis of the Damage Behavior of An Aluminum/CFRP Hybrid Beam Under Three Point Bending[J]. Composites Part B:Engineering, 2014, 56:397-407.
    [39] YOKOYAMA T, NAKAI K, KOMATSUBARA Y.Constitutive Modeling of Mechanical Behavior of Friction Stir Welded AA2024-T3 Butt Joints Under In-Plane Tension and Through-Thickness Compression[J]. Journal of the Japanese Society for Experimental Mechanics, 2013, 13:114-119.
  • 加载中
计量
  • 文章访问数:  78
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 网络出版日期:  2021-10-27

目录

    /

    返回文章
    返回