RESEARCH ON MECHANICAL PROPERTIES OF STEEL SPHERICAL HINGE OF ASYMMETRIC ROTATION CONSTRUCTED LONG-SPAN CABLE-STAYED BRIDGE
-
摘要: 针对超大吨位非对称桥梁水平转体施工称重、配重难度大的问题,研发了一种桥梁水平转体新体系,该体系通过设置承重撑脚承担上部的不平衡力矩,其传力路径明确、受力合理、施工方便快捷,可节省超大吨位非对称桥梁称重、配重等施工工序时间和费用。采用有限元软件ABAQUS建立了该新型体系的受力分析模型,分析了竖向荷载和不平衡力矩作用下球铰和钢管混凝土撑脚的受力情况。有限元分析研究结果表明:钢管混凝土撑脚与球铰之间的荷载分配与力学概念分析基本一致,球铰摩擦矩可以抵消部分不平衡力矩;当摩擦系数由0.03增加至0.1时,摩擦矩增加,球铰竖向荷载增加2.4%,撑脚竖向荷载降低19.1%,考虑到转体的牵引力应尽量小,因此应使球铰的摩擦系数尽量小。可以采用文中提出的算式计算不平衡力矩作用下钢管混凝土撑脚承担的荷载。Abstract: Aiming at the difficulty in weighing and counterweighting of super-tonnage asymmetric bridges with horizontal rotation construction, a new system for horizontal rotation of bridges has been developed. The system adopts load-bearing supports to bear the unbalanced moment of the upper part, which can save construction procedures and costs such as the weighing and counterweight. A finite element model of the new system was established by using the software ABAQUS, and it was used to analyze the spherical hinge and the concrete-filled steel tubular footing under the action of vertical load and unbalanced moment. The load distribution between the support footing and the spherical hinge was basically consistent with the theoretical results. The friction moment of the spherical hinge could counterbalance part of the unbalanced moment. When the friction coefficient increased from 0.03 to 0.1, the friction moment increased, and the vertical force of the spherical hinge and support footing increased by 2.4% and -19.1%, respectively. Thus the friction coefficient had slight effect on the vertical force of the load-bearing support footing. The friction coefficient of the spherical hinge should be minimized in order to minimize the traction force. The proposed formula could be used to calculate the vertical load borne by the concrete-filled steel tube support footing.
-
Key words:
- asymmetric /
- horizontal rotation /
- load-bearing support footing /
- mechanical behaviour /
- design formula
-
[1] 刘建.平转法施工球铰受力分析及不平衡力矩预估[D].济南:山东大学, 2019. [2] 孙聪, 高日.特殊支撑体系的转体桥施工牵引力计算方法分析[J].铁道建筑, 2011(2):45-47. [3] ESTES A C.Bridge Maintenance, Safety, Management, and Life-Cycle Optimization[J].Structure and Infrastructure Engineering, 2011, 7(10):807-808. [4] 车晓军, 周庆华, 关林坤.转体施工桥梁大吨位球铰径向应力计算方法优化研究[J].武汉理工大学学报(交通科学与工程版), 2014, 38(2):356-358. [5] 左敏, 江克斌.转体桥平转球铰转体过程应力计算方法研究[J].铁道标准设计, 2015, 59(12):36-39. [6] 肖宇松, 陈银伟.极不平衡桥梁转体球铰设计方法[J].铁道建筑, 2019, 59(11):26-28. [7] FENG Y, QI J, WANG J, et al.Rotation Construction of Heavy Swivel Arch Bridge for High-Speed Railway[J].Structures, 2020, 26:755-764. [8] XIAO J, LIU M, ZHONG T, et al.Seismic Performance Analysis of Concrete-Filled Steel Tubular Single Pylon Cable-Stayed Bridge with Swivel Construction[C]//IOP Conf.Ser.Earth Environ.SCI.Hefei:2019. [9] 薛飞, 饶露, 韦建刚, 等.桥梁工程转体施工中球铰应力计算方法[J].沈阳建筑大学学报(自然科学版), 2020, 36(6):1047-1054. [10] 黄仕平, 唐勇, 袁兆勋, 等.桥梁转体施工接触面应力分析及优化方法[J].哈尔滨工程大学学报, 2020, 41(12):1790-1796. [11] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936-2014[S].北京:中国建筑工业出版社, 2014. [12] 兰印龙.水平转体球铰力学分析与应用研究[D].石家庄:石家庄铁道大学, 2018. [13] 张新冈.平转法桥梁施工球铰分析及控制研究[D].北京:中国铁道科学研究院, 2017. [14] 巫祖烈, 周华威, 严泽, 等.大吨位徐变仪球铰非线性接触分析[J].公路交通技术, 2014(2):48-52. [15] 马朝旭.客运专线跨铁路连续梁平转法施工力学特性分析研究[D].兰州:兰州交通大学, 2014. [16] 任韶敏.铁路连续箱梁水平转体施工及监控技术研究[D].石家庄:石家庄铁道大学, 2014. [17] 何俊.大跨度连续梁桥转体施工力学特性分析[D].兰州:兰州交通大学, 2012.
点击查看大图
计量
- 文章访问数: 70
- HTML全文浏览量: 17
- PDF下载量: 1
- 被引次数: 0