Remediation Tests of Zn2+ Contaminated Soil by Soybean Urease
-
摘要: 为了研究植物脲酶诱导碳酸钙沉淀技术(EICP)对Zn2+污染土的处理效果,从大豆中提取了丰富的脲酶,在底物诱导下实现对重金属污染土中Zn2+的矿化处理。通过Tessier五步连续提取法对修复前、后污染土中不同形态Zn2+进行提取检测,并对不同修复次数的土体进行无侧限抗压强度试验。结果表明:所提取的大豆脲酶能有效催化尿素水解生成碳酸根离子,使其在底物诱导下生成碳酸盐沉淀并矿化Zn2+;EICP技术能有效降低污染砂土中Zn2+的含量,使其以碳酸盐的形式固定封存;随着修复次数的增加,砂土的无侧限抗压强度从碎散状0 MPa增加至0.44 MPa。EICP技术为重金属Zn2+污染土修复提供了新的选择。Abstract: In order to study the treatment effect of Enzyme Induced Calcium Carbonate Precipitation (EICP) on Zn2+ contaminated soil, abundant urease was extracted from soybean, mineralization of heavy metal Zn2+ with substrate induction was implemented. The different forms of Zn2+ in contaminated sand before and after remediation were extracted and detected by Tessier’s five-step continuous extraction method, and the mechanical properties of different remediation times were compared through unconfined compressive strength tests. Results showed that the extracted urease had a good activity and it could effectively catalyzed the hydrolysis of urea to form carbonate ions, which could form carbonate precipitation and mineralize Zn2+ in the induction of substrate. EICP technology could effectively reduce the content of Zn2+ in contaminated sand, and fix it in the form of carbonate, moreover, the unconfined compression strength of the repaired sand increased from 0 to 0.44 MPa after repaired 3 times. EICP technology provided a new choice for the remediation of heavy metal Zn2+ contaminated soil.
-
[1] 邓代莉,石清清,薛圣炀,等.外源铅污染对紫色土中微生物酶活性的影响研究[J].环境污染与防治,2018,40(10):1095-1100. [2] 刘松玉.污染场地测试评价与处理技术[J].岩土工程学报,2018,40(1):1-37. [3] 王茂林,吴世军,杨永强,等.微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J].环境科学研究,2018,31(2):206-214. [4] ACHAL V, PAN X, ZHANG D, et al. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation[J]. Journal of Microbiol Biotechnol, 2012, 22(2):244-247. [5] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979,51(7):844-851. [6] 许朝阳,柏庭春,黄建璋,等.铁细菌修复锌污染土壤的试验研究[J].工业建筑,2016,46(6):90-93,132. [7] 王新花,赵晨曦,潘响亮.基于微生物诱导碳酸钙沉淀(MICP)的铅污染生物修复[J].地球与环境,2015,43(1):80-85. [8] DILRUKSHI R A N, KAWASAKI S. Effect of plant-Derived urease-induced carbonate formation on the strength enhancement of sandy soil[G]//Ecological Wisdom Inspired Restoration Engineering. Singapore:Springer, 2019:93-108. [9] KANG C H, SO J S. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals[J]. Ecological Engineering, 2016, 97:304-312. [10] NEUPANE D, YASUHARA H, KINOSHITA N, et al. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12):2201-2211. [11] 吴林玉,缪林昌,孙潇昊,等.植物源脲酶诱导碳酸钙固化砂土试验研究[J].岩土工程学报,2020,45(4):714-720. [12] 张铁军,施圆圆,孔令漪,等.黄豆豆渣中脲酶的提取精制及其影响因素研究[J].生物技术进展,2017,7(3):253-257. [13] 崔有宏,罗侃,吴育凌,等.黄豆脲酶的提取与性质研究[J].甘肃科学学报,2000(1):62-66. [14] 周东凯,刘莹,马学良,等.大豆脲酶的提取及其影响因素研究[J].大豆科学,2008(4):704-707. [15] 邹菁,喻德忠,杨先进,等.黄豆脲酶的提取及其在缓释肥料中尿素态氮测定中的应用[J].分析科学学报,2004(2):178-180. [16] 杨丰,何稼,亓永帅,等.大豆脲酶基本特性与粉质砂土的固化研究[J].河南科学,2019,37(1):112-118. [17] WHIFFIN V S. Microbial CaCO3 precipitation for the production of bio-cement[D]. Perth:Murdoch University, 2004.
点击查看大图
计量
- 文章访问数: 141
- HTML全文浏览量: 17
- PDF下载量: 1
- 被引次数: 0