ANALYSIS ON EVOLUTION LAWS AND CAUSES OF STRUCTURE PERFORMANCES FOR COASTAL IMMERSED TUNNELS IN SOFT SOIL
-
摘要: 鉴于我国沉管隧道运营期服役安全鉴定和进一步维修养护决策亟需相应技术支撑和参考依据,为研究沉管隧道结构长期性能演化的规律及其成因,对上海外环隧道长期沉降、接头水压及裂缝、渗水、露筋、覆土厚度等多项数据进行对比分析,揭示了沉管隧道病害的主要分布特征、结构性能的发展规律及各类常见病害的成因。结果表明:外环隧道存在显著的不均匀沉降,部分区段至今未达稳定;止水损伤的接头内存在水压,水压随温度季节性变化的现象反映了接头的伸缩;上海外环隧道结构性能存在"地基垫层、覆土荷载—不均匀沉降—结构受力变形—荷载裂缝开展—渗水、露筋锈蚀"的劣化链。Abstract: In view of the urgent need of dependably technical supports and guidance in safety appraisals and further maintenance decisions for immersed tunnels in operation in China, to explore the long-term evolution laws and causes of structural performances for immersed tunnels, an analysis comparison was conducted on investigated data from Waihuan Tunnel in Shanghai involving long-term subsidence, water pressure in gaskets between segment joints,cracks in segments,quantities of water seepage and bare rebars,and thickness of overlaying soil,the main distribution characteristics of damage, evolution laws of structural properties, and causes of common damage were revealed. The results showed that subsidence was significant uneven along Waihuan Tunnel in Shanghai, in which the subsidence in some sections was not steady yet. Water pressure was measured in gaskets between segment joints of being damaged in waterproof, the seasonal variations of water pressure by temperature reflected the expansion and contraction of segment joints. A main chain of the performance deterioration for Waihuan Tunnel in Shanghai was revealed, that was the poor foundation and heavier loads from overlaying soil caused the uneven subsidence and then led to a series of quality issues that were the deformation of the structure, the evolution of cracks, the water seepage, the exposure and corrosion of rebars in series.
-
Key words:
- immersed tunnel /
- performance evolution /
- structural damage /
- uneven subsidence
-
[1] 钱七虎. 水下隧道工程实践面临的挑战、对策及思考[J]. 隧道建设, 2014, 34(6):503-507. [2] 杨新安, 黄宏伟. 隧道病害与防治[M].上海:同济大学出版社, 2003. [3] 袁勇, 刘涛, 柳献. 运营越江隧道服役现状调查与检测评估[J]. 东南大学学报(自然科学版), 2006, 36(增刊2):83-89. [4] GRANTZ W C. Steel-Shell Immersed Tunnels:Forty Years of Experience[J]. Tunnelling and Underground Space Technology, 1997, 12(1):23-31. [5] GRANTZ W C. Immersed Tunnel Settlements. Part 1:Nature of Settlements[J]. Tunnelling and Underground Space Technology, 2001, 16(3):195-201. [6] GRANTZ W C. Immersed Tunnel Settlements. Part 2:Case Histories[J]. Tunnelling and Underground Space Technology, 2001, 16(3):203-210. [7] 邵俊江, 李永盛. 沉管隧道沉降问题的探讨[J]. 地质与勘探, 2003, 39(增刊2):178-181. [8] 魏纲, 裘慧杰, 魏新江. 沉管隧道施工期间与工后长期沉降的数据分析[J]. 岩石力学与工程学报, 2013, 32(增刊2):3413-3420. [9] GUO J, JIANG S P, ZHANG Z Y. Fire Thermal Stress and Its Damage to Subsea Immersed Tunnel[J]. Procedia Engineering, 2016, 166:296-306. [10] YANG G D, WANG G H, LU W B, et al. Damage Assessment and Mitigation Measures of Underwater Tunnel Subjected to Blast Loads[J]. Tunnelling and Underground Space Technology, 2019, 94:103-131. [11] 高峰, 关宝树. 列车荷载对长江沉管隧道的影响[J]. 铁道学报, 2001, 23(3):117-120. [12] 王秀英, 刘维宁. 列车振动作用下沉管地基砂土液化可能性研究[J]. 铁道学报, 2004, 26(1):96-100. [13] 谢雄耀, 王培, 李永盛, 等. 甬江沉管隧道长期沉降监测数据及有限元分析[J]. 岩土力学, 2014, 35(8):2314-2324. [14] 谢雄耀, 易成敏, 李伟平, 等. 甬江沉管隧道运营期接头监测数据安全性分析[J]. 岩土工程学报, 2019, 41(12):2338-2344. [15] 卢颖明, 陈礼伟. 既有隧道病害现象分类及原因分析[J]. 铁道建筑, 2010(11):46-49. [16] 胡盛斌, 张征亮. 既有沉管隧道病害综合检测与评估[J]. 低温建筑技术, 2013, 35(8):114-117. [17] 徐干成, 李永盛, 孙钧, 等. 沉管隧道的基础处理、基槽淤积和基础沉降问题[J]. 世界隧道, 1995(3):2-18. [18] 潘永仁, 彭俊, SAITO N. 上海外环沉管隧道管段基础压砂法施工技术[J]. 现代隧道技术, 2004, 41(1):41-45.
点击查看大图
计量
- 文章访问数: 125
- HTML全文浏览量: 24
- PDF下载量: 5
- 被引次数: 0