RESEARCH ON BONDING PERFORMANCE BETWEEN REBAR AND POLYMER CEMENT MORTAR AFTER BEING SUBJECTED TO HIGH TEMPERATURES
-
摘要: 聚合物水泥砂浆(PCM)因与混凝土良好的黏结性被广泛应用于钢筋混凝土结构加固,但高温下PCM与钢筋的黏结性能退化规律尚不明确。对不同高温和冷却方式的钢筋与PCM黏结性能进行了试验研究。结果表明:1)自然冷却下破坏模式为劈裂和劈裂拔出的试件,对应泡水冷却试件的破坏模式为劈裂拔出和拔出;2)冷却方式对黏结强度的影响随温度上升而增大;3)冷却方式不同会导致试件不同的破坏形式,影响试件的滑移量;4)随着温度的升高,试件的黏结强度随之下降,滑移量随之上升。并根据试验结果建立了钢筋-PCM黏结强度高温退化模型,为实际工程提供参考。Abstract: Polymer cement mortar (PCM) has been widely used in the reinforcement of reinforced concrete structure because of its good bond with concrete, but the law of bond degradation between PCM and rebar at high temperatures is still unclear. Experimental studies were conducted on the bonding properties of rebar and PCM under different temperatures and cooling methods. The results showed that:1) the failure modes of the specimens under natural cooling were split and split pull-out, and the corresponding failure modes of the water-cooled specimens were split pull-out and pulled out; 2)the influence of cooling mode on bond strength increased with the increase of temperature; 3)different cooling methods would lead to different failure forms of specimens, which would affect the slip amount of specimens; 4)with the increases of temperature, the bond strength of the specimen decreased and the slip amount increased. According to the experimental results, the high temperature degradation model of rebar-PCM bond strength was established, which could provide a reference for practical engineering.
-
Key words:
- PCM /
- bonding performance /
- heating temperature /
- cooling method /
- stiffness degradation
-
[1] 梅迎军. 纤维聚合物水泥砂浆与基体界面粘结性能研究[J]. 土木工程学报, 2010(4):125-12. [2] 王新友, 吴科如. 聚合物水泥砂浆与混凝土粘结界面的断裂性能研究[J]. 混凝土与水泥制品, 1995(1):8-10. [3] RASHID K, UEDA T, ZHANG D, et al. Experimental and Analytical Investigations on the Behavior of Interface/Between Concrete and Polymer Cement Mortar under Hygrothermal Conditions[J]. Construction & Building Materials, 2015, 94:414-425. [4] RASHID K, ZHANG D, UEDA T, et al. Investigation on Concrete-PCM Interface Under Elevated Temperature:At Material Level and Member Level[J]. Construction & Building Materials, 2016, 125:465-478. [5] 陈萌, 马婷婷, 张豪剑, 等. 钢筋与砌块专用砌筑砂浆的黏结锚固性能试验研究[J]. 铁道建筑, 2016, 504(2):158-162. [6] 陈萌, 马婷婷, 苗丽, 等. 砌块专用砂浆-钢筋的黏结滑移本构关系研究[J]. 铁道建筑, 2017(7):148-151, 9. [7] 王邦. 高温后钢筋与钢纤维混凝土粘结性能的试验研究[D]. 郑州:郑州大学, 2009. [8] 陈良豪. 掺聚丙烯纤维高性能混凝土高温后粘结性能试验研究[D]. 太原:太原理工大学, 2015. [9] 郑晓燕, 吴胜兴.钢筋混凝土粘结滑移本构关系建立方法的研究[J]. 四川建筑科学研究, 2006, 32(1):18-21. [10] SARIDEMIR M, SEVERCAN M H, CIFLIKLI M, et al. The Influence of Elevated Temperature on Strength and Microstructure of High Strength Concrete Containing Ground Pumice and Metakaolin[J]. Construction & Building Materials, 2016, 124:244-257. [11] CHEN B, LI C, CHEN L. Experimental Study of Mechanical Properties of Normal-Strength Concrete Exposed to High Temperatures at an Early Age[J]. Fire Safety Journal, 2009, 44(7):997-1002. [12] 杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940. [13] 高宇剑. 高强混凝土火灾后力学性能退化及高温爆裂机理研究[D]. 徐州:中国矿业大学, 2014. [14] 王朝阳, 杨鸥, 霍静思. 高温下钢筋与混凝土粘结锚固性能试验研究[J]. 硅酸盐通报, 2017, 255(12):39-47. [15] 张立峰, 王忠海, 姚秋来, 等.高温后聚合物砂浆加固材料力学性能的试验研究[J]. 福州大学学报(自然科学版), 2013, 41(4):434-438.
点击查看大图
计量
- 文章访问数: 172
- HTML全文浏览量: 21
- PDF下载量: 10
- 被引次数: 0