ANALYSIS ON STRUCTURAL RESPONSES OF PREFABRICATED CABLE TUNNELS WITH DIFFERENT JOINTS IN UNEVEN SUBSIDENCE
-
摘要: 对平接加预应力连接接头、凹凸面榫槽连接接头和凹凸面榫槽加预应力连接接头三种接头形式连接的预制装配式电缆隧道在软土地基上发生不均匀沉降的工况进行数值模拟,从沉降位移、错台量、张开量、混凝土应力-应变和环缝剪力五个方面进行对比分析,结果表明:凹凸面榫槽的存在提高了接头的抗剪性能,预应力筋的存在提高了接头的抗弯性能;两者均可提高电缆隧道结构的整体性,但预应力筋张拉会引起张拉端环缝产生较大的张开量、错台量和凹凸面榫槽主拉应力。为避免环缝处产生过大变形或发生局部破坏,对各种接头形式的设计提出了建议。Abstract: The longitudinal structural performances of the prefabricated cable tunnels in soft soil foundation in the cases of uneven subsidence were analyzed by the finite element mothod, which respectively have plain joints with prestressing tendons and tongue and groove joints with concave-convex faces and with or without prestressed tendons simultaneously. The vertical displacement, dislocation, opening width of joints, the stress and strain of the concrete, and the shearing forces in circumferential joints were analyzed and compared. It was shown that tongue and groove joints with concave-convex faces could improve the shear resistance of circumferential joints, prestressing tendons could improve the flexural resistance of circumferential joints. Both of them could improve the integrity of the prefabricated cable tunnels. But prestressing tension might result in larger opening width, dislocation and principal tensile stress in circumferential joints at tensioned segments. To avoid excessive deformation or local damage at circumferential joints, some design suggestions for prefabricated cable tunnels were proposed.
-
[1] 胡翔, 薛伟辰. 预制预应力综合管廊受力性能试验研究[J]. 土木工程学报, 2010, 43(5):29-37. [2] 薛伟辰, 胡翔, 王恒栋. 上海世博园区预制预应力综合管廊力学性能试验研究[J]. 特种结构, 2009, 26(1):105-108, 116. [3] 张铨婧. PC钢棒连接下的预制综合管廊的接头受力性能研究[D]. 广州:华南理工大学, 2018. [4] 王汝宝, 徐营, 窦顺. 隧道管片纵向沉降与环缝张开量的关系研究[J]. 能源技术与管理, 2019, 44(5):176-177, 189. [5] HUANG H W, GONG W P, SARA K, et al. Simplified Procedure for Finite Element Analysis of the Longitudinal Performance of Shield Tunnels Considering Spatial Soil Variability in Longitudinal Direction[J]. Computers & Geotechnics, 2015, 64(3):132-145. [6] 中国国家电网公司. 明挖电缆隧道设计导则:Q/GDW 11187-2014[S]. 北京:中国电力出版社, 2014. [7] 中华人民共和国住房和城乡建设部. 城市桥梁设计规范:CJJ 11-2011[S]. 北京:中国建筑工业出版社, 2011. [8] 中华人民共和国建设部. 给水排水工程管道结构设计规范:GB 50332-2002[S]. 北京:人民交通出版社, 2002. [9] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012. [10] 王研, 汪鹏, 胡志华. 预制装配式综合管廊不均匀沉降与节间纵向张拉力相关性分析[J]. 特种结构, 2018(1):12-16. [11] 桑运龙, 刘学增, 张强. 基于螺栓-凹凸榫连接的地铁盾构隧道管片环缝接头刚度分析及应用[J]. 隧道建设(中英文), 2020, 40(1):19-27. [12] CHOU W I, BOBET A. Predictions of Ground Deformations in Shallow Tunnels in Clay[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2002, 17(1):3-19. [13] 王如路.上海地铁盾构隧道纵向变形分析[J]. 地下工程与隧道, 2009(4):1-6, 56. [14] 尚武孝.地基差异沉降对预制拼装综合管廊结构影响:以平潭综合实验区地下综合管廊干线工程为例[J]. 福建建筑, 2020(6):105-112. [15] 郭一帆. 经典Timoshenko梁理论在盾构隧道纵向不均匀变形中的适用及相关研究[D]. 北京:北京交通大学, 2018.
点击查看大图
计量
- 文章访问数: 61
- HTML全文浏览量: 6
- PDF下载量: 0
- 被引次数: 0