中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维混凝土断裂性能的研究现状及展望

魏新江 任梦博 冯鹏 吴熙 廖娟

魏新江, 任梦博, 冯鹏, 吴熙, 廖娟. 纤维混凝土断裂性能的研究现状及展望[J]. 工业建筑, 2022, 52(2): 1-9. doi: 10.13204/j.gyjzG20102205
引用本文: 魏新江, 任梦博, 冯鹏, 吴熙, 廖娟. 纤维混凝土断裂性能的研究现状及展望[J]. 工业建筑, 2022, 52(2): 1-9. doi: 10.13204/j.gyjzG20102205
WEI Xinjiang, REN Mengbo, FENG Peng, WU Xi, LIAO Juan. A Review and Prospect for Fracture Properties of Fiber-Reinforced Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 1-9. doi: 10.13204/j.gyjzG20102205
Citation: WEI Xinjiang, REN Mengbo, FENG Peng, WU Xi, LIAO Juan. A Review and Prospect for Fracture Properties of Fiber-Reinforced Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 1-9. doi: 10.13204/j.gyjzG20102205

纤维混凝土断裂性能的研究现状及展望

doi: 10.13204/j.gyjzG20102205
基金项目: 

杭州市科技局项目(20191203B42)

浙江省自然科学基金项目(LY18E080026)

国家自然科学基金项目(51708495)。

详细信息
    作者简介:

    魏新江,男,1965 年出生,博士,教授。

    通讯作者:

    吴熙,wuxi@zucc.edu.cn。

A Review and Prospect for Fracture Properties of Fiber-Reinforced Concrete

  • 摘要: 断裂参数可用于分析纤维在不同受力阶段对材料断裂性能的影响程度,从而有助于准确评价纤维混凝土的断裂性能。通过整理常见的纤维混凝土断裂试验方法及其特点,介绍并分类基于试验方法得到的断裂参数,对比讨论了同类型和不同类型参数各自的优缺点及适用的纤维混凝土类型。根据收集到的纤维混凝土断裂参数的试验数据,分析影响纤维混凝土断裂性能的主要因素及其影响规律。研究发现:三点弯曲梁和四点弯曲梁是目前常用的断裂试件形式,通过其测试得到的断裂参数表征不同的断裂行为,建议使用等效抗弯强度综合评价纤维混凝土的断裂性能。最后,对纤维混凝土断裂性能的研究方向提出了展望。
  • [1] SINGH N K, RAI B. A review of fiber synergy in hybrid fiber reinforced concrete[J]. Journal of Applied Engineering Sciences, 2018, 8(2):41-50.
    [2] BRANDT A M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering[J]. Composite Structures, 2008, 86(1/2/3):3-9.
    [3] XU T, STEWART R, FAN J, et al. Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods[J]. Engineering Fracture Mechanics, 2016, 155:166-182.
    [4] CAGGIANO A, CREMONA M, FAELLA C, et al. Fracture behavior of concrete beams reinforced with mixed long/short steel fibers[J]. Construction and Building Materials, 2012, 37:832-840.
    [5] KAPLAN M F. Crack propagation and the fracture of concrete[J]. ACI Journal, 1961, 5(58):591-610.
    [6] 尹阳阳,胡少伟,王宇航.自重对混凝土三点弯曲梁断裂性能的影响[J].工程力学, 2019, 36(7):48-56

    ,108.
    [7] 郭向勇,方坤河,冷发光.混凝土断裂能的理论分析[J].哈尔滨工业大学学报, 2005, 37(9):59-62.
    [8] 胡少伟,安康,陆俊.无自重影响的混凝土材料断裂韧度测试方法:CN103698224A[P]. 2014-04-02.
    [9] 吴智敏,程功,付腾飞,等.自重不做功的混凝土三点弯曲梁断裂能测试装置:CN101706389A[P]. 2010-05-12.
    [10] BENCARDINO F, RIZZUTI L, SPADEA G, et al. Implications of test methodology on post-cracking and fracture behaviour of steel fibre reinforced concrete[J]. Composites:Part B, 2013, 46:31-38.
    [11] SOETENS T, MATTHYS S. Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete[J]. Construction and Building Materials, 2014, 73:458-471.
    [12] 邓宗才,王辉,刘岩.生态钢纤维混凝土弯曲韧性和断裂性能[J].建筑科学与工程学报, 2017, 34(2):111-118.
    [13] ELSER M, TSCHEGG E K, FINGER N, et, al. Fracture behaviour of polypropylene-fibre reinforced concrete:an experimental investigation[J]. Composites Science and Techonology, 1996, 56(8):933-945.
    [14] TSCHEGG E K,SCHNEEMAYER A,MERTA I,et al.Energy dissipation capacity of fibre reinforced concrete under biaxial tension-compression load. part I:test equipment and work of fracture[J]. Cement and Concrete Composites, 2015, 62:195-203.
    [15] RAJA R B, SIVAKUMAR M V N. Studies on effect of steel fiber and coarse aggregate on fracture properties of self compacting concrete using wedge splitting test[J]. International Journal of Structural Integrity, 2020, 11(6):751-767.
    [16] ABRISHAMBAF A, CUNHA V M C F, BARROS J A O. The influence of fibre orientation on the post-cracking tensile behaviour of steel fibre reinforced self-compacting concrete[J]. Frattura ed Integrita Strutturale, 2015(31):38-53. DOI: 10.3221/IGF-ESIS.31.04
    [17] ABRISHAMBAF A,BARROS J A O,CUNHA V M C F. Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tnsile test[J]. Cement and Concrete Composites, 2015, 57:153-165.
    [18] LÖFGREN I,STANG H,OLESEN J F.The WST method, a fracture mechanics test method for FRC[J]. Materials and Structures, 2008,41(1):197-211.
    [19] 黄勇,史才军,欧阳雪,等.混凝土劈裂拉伸测试方法及性能研究进展[J].材料导报, 2021, 35(1):1131-1140.
    [20] BELLETTI B, CERIONI R, MEDA A, et al. Design aspects on steel fiber-reinforced concrete pavements[J]. Journal of Materials in Civil Engineering, 2008, 20(9):599-607.
    [21] AHANGARI K, BEYGI M H A, REZAEI Y. Applicability of fiber reinforced self-compacting concrete for tunnel lining[J]. Arabian Journal of Geosciences, 2013, 6(10):3841-3846.
    [22] ABBAS S, SOLIMAN A M, NEHDI M L. Mechanical performance of reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments:a case study[J]. ACI Materials Journal, 2014, 111(5):501-510.
    [23] International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM). Test and design methods for steel fibre reinforced concrete; bending test:TC 162-TDF[J]. Material and Structures, 2002, 35(253):579-582.
    [24] Ente Nazionale Italiano di Uniticazione (UNI). Steel fibre reinforced concrete:test method to determine the first crack strength and ductility indexes:UNI 11039-1[S]. Milan:UNI, 2003.
    [25] American Society of Testing and Materials (ASTM). Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading):ASTM C1609/C1609M-12[S]. West Conshohocken:ASTM, 2012.
    [26] British Standards Institution. Test method for metallic fibered concrete measuring the flexural tensile strength (limit of proportionality (LOP), residual):BS EN 14651:2007+A1[S].London:British Standards Institution, 2007.
    [27] 邓宗才.混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J].复合材料学报, 2016, 33(6):1274-1280.
    [28] XU S, REINHARDT H W. A simplified method for determining double-K fracture parameters for three-point bending tests[J]. International Journal of Fracture, 2000, 104(2):181-209.
    [29] American Society of Testing and Materials (ASTM). Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading):ASTM C 1018-97[S]. West Conshohocken:ASTM, 1998.
    [30] International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(484):287-290.
    [31] 董亚超,杨鼎宜,葛晨,等.基于RILEM TC 162-TDF标准的聚丙烯纤维混凝土韧性研究[J].混凝土, 2019(9):62-66,70.
    [32] 鞠杨,刘红彬,陈健,等.超高强度活性粉末混凝土的韧性与表征方法[J].中国科学(E辑:技术科学), 2009, 39(4):793-808.
    [33] BARROS J A O. Post-cracking behaviour of steel fibre reinforced concrete[J]. Materials and Structures, 2005, 38(275):47-56.
    [34] GHASEMI M, GHASEMI M R, MOUSAVI S R. Studying the fracture parameters and size effect of steel fiber-reinforced self-compacting concrete[J]. Construction and Building Materials, 2019, 201:447-460.
    [35] GHASEMI M, GHASEMI M R, MOUSAVI S R. Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters[J]. Construction and Building Materials, 2018, 162:674-682.
    [36] ALBERTI M G, ENFEDAQUE A, GáLVEZ J C, et al. Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions[J]. Marterials and Design, 2014, 60:57-65.
    [37] SOETENS T, GYSEL A V, MATTHYS S, et al. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres[J]. Construction and Building Materials, 2013, 43:253-265.
    [38] LEE Y, KANG S, KIM J. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J]. Construction and Building Materials, 2010, 24(10):2030-2041.
    [39] SUN X, GAO Z, CAO P, et al. Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam[J]. Construction and Building Materials, 2019, 225:788-800.
    [40] 薛启超,张井财,何建,等.三点弯曲下玄武岩纤维混凝土的断裂韧度实验研究[J].混凝土, 2016(10):50-53.
    [41] 王志杰,李瑞尧,徐君祥,等.混杂复合纤维高性能混凝土断裂性能研究[J].路基工程, 2020(3):81-85.
    [42] XIONG S, XIA D, LIU X. Flexural toughness of hybrid fiber reinforced concrete under notched beam three-point bending[J]. Advanced Materials Research, 2014, 906:311-317.
    [43] YAO W, LI J, WU K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research, 2003, 33(1):27-30.
    [44] ALMUSALLAM T, IBRAHIM S M, AL-SALLOUM Y, et al. Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete[J]. Cement and Concrete Composites, 2016, 74:201-217.
    [45] ALBERTI M G, ENFEDAQUE A, GÁLVEZ J C, et al. Fibre distribution and orientation of macro-synthetic polyolefin fibre reinforced concrete elements[J]. Construction and Building Materials, 2016, 22:505-517.
    [46] ZHANG S, ZHANG C, LIAO L. Investigation on the relationship between the steel fibre distribution and the post-cracking behaviour of SFRC[J]. Construction and Building Materials, 2019, 200:539-550.
    [47] LI H, YANG J, LI Z. An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape[J]. Engineering Fracture Mechanics, 2014, 116:190-196.
    [48] QING L, CHENG Y, MU R. Toughness enhancement and equivalent initial fracture toughness of cementitious composite reinforced with aligned steel fibres[J]. Fatigue&Fracture of Engineering Materials&Structures, 2019, 42(11):2533-2543.
    [49] KANG S, KIM J. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution[J]. Construction and Building Materials, 2012, 28(1):57-65.
    [50] BANTHIA N, SAPPAKITTIPAKORN M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization[J]. Cement and Concrete Research, 2007, 37(9):1366-1372.
    [51] YAZICI, NAN G, TABAK V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC[J]. Construction and Building Materials, 2007, 21(6):1250-1253.
    [52] LI B, CHI Y, XU L, et al. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete[J]. Construction and Building Materials, 2018, 191:80-94.
    [53] UYGUNOĞLU T. Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete[J]. Materials and Structures, 2008,41(8):1441-1449.
    [54] XU L, WU F, CHI Y, et al. Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete[J]. Construction and Building Materials, 2019, 206(10):97-110.
    [55] BEYGI M H A, KAZEMI M T, NIKBIN I M, et al. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete[J]. Cement and Concrete Research, 2014, 66:75-90.
    [56] ALYHYA W S, ABO DHAHEER M S, AL-RUBAYE M M, et al. Influence of mix composition and strength on the fracture properties of self-compacting concrete[J]. Construction and Building Materials, 2016, 110:312-322.
    [57] OCHI T, OKUBO S, FUKUI K. Development of recycled PET fiber and its application as concrete-reinforcing fiber[J]. Cement and Concrete Composites, 2007, 29(6):448-455.
    [58] LEE J. Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete[J]. Composite Structures, 2017, 168:216-225.
    [59] NGUYEN D L, KIM D J, RYU G S, et al. Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete[J]. Composites Part B:Engineering, 2013, 45(1):1104-1116.
    [60] KIM D J, NAAMAN A E, EL-TAWIL S. Correlation between tensile and bending behavior of FRC composite with scale effect[C]//7th International Conference on Fracture Mechanics of Concrete and Concrete Structures. 2010:1379-1385.
    [61] YOO D, KANG S, YOON Y. Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC[J]. Construction and Building Materials, 2014, 64:67-81.
    [62] KANG S, KIM J. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41(10):1001-1014.
    [63] 侯敏,陶燕,陶忠,等.关于玄武岩纤维混凝土的增强机理研究[J].混凝土, 2020(2):67-71.
  • 加载中
计量
  • 文章访问数:  245
  • HTML全文浏览量:  29
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 网络出版日期:  2022-06-30
  • 刊出日期:  2022-02-20

目录

    /

    返回文章
    返回