RELIABILITY EVALUATION AND SPECIFICATION DISCUSSION OF CFRP REINFORCED CONCRETE CIRCULAR COLUMNS UNDER AXIAL LOADS
-
摘要: 以碳纤维增强复材(CFRP)包裹钢筋混凝土圆柱为研究对象,利用设计点(JC)法对GB 50608—2010《纤维增强复合材料建设工程应用技术规范》中轴压构件的设计方法进行可靠度评估,并进行了主要参数对可靠度指标的影响分析。研究结果发现:圆柱直径和混凝土强度对平均可靠度指标几乎没有影响;钢筋强度、钢筋配筋率和FRP强度对平均可靠度指标的影响较小,而FRP用量的影响则相对较为明显,且呈现出随着FRP用量增大而增大的变化趋势;平均可靠度指标随着荷载效应比的增大先逐渐增大,而当荷载效应比大于2.0后则变得平缓;对于住宅和办公楼活荷载,CFRP加固钢筋混凝土圆柱的平均可靠度指标分别为4.40和4.53,均比现行的GB 50010—2010《混凝土结构设计规范》中普通钢筋混凝土轴压构件的可靠度指标大约低0.8。为能够获得与GB 50010—2010中轴压构件同等的可靠度水平,对原有的承载力计算式提出了修正建议。Abstract: Taking the CFRP reinforced concrete circular columns as the research object, a reliability evaluation on the axial compressed members which were designed according to the Technical Code for Infrastructure Application of FRP Composites GB 50608-2010, was conducted by JC method. It was found that the diameter of the columns and concrete strength had little effect on the average reliability index. The steel strength, steel reinforcement ratio, and FRP strength all had a little effect on the average reliability index. By contrast, the FRP reinforcement ratio had an obvious effect on the reliability index, and the average reliability index indicated an increase tendency with a larger FRP reinforcement ratio. Similarly, the average reliability index increased with the increase of load effect ratio, and then became flat when the load effect ratio was larger than 2.0. The average reliability index of CFRP reinforced circular columns under axial loads were 4.40 and 4.53, corresponding to the two typical live loads of residential building and office building respectively. These reliability indexes were about 0.8 lower than the axial compressed columns designed by the Code for Design of Concrete Structures GB 50010-2010. In order to obtain the same reliability level as the axial compressed members in the current code of GB 50010-2010, some suggestions were put forward to revise the original formula provided by the code of GB 50608-2010.
-
[1] 史志华, 胡德炘, 陈基发. 钢筋混凝土结构安全度水准修订评估[J]. 建筑科学, 2002, 18(增刊2):50-57. [2] 蒋利学, 王卓琳. 我国现行建筑结构设计规范可靠度的校核与分析[J]. 结构工程师, 2020, 36(2):1-9. [3] 王微, 崔静. 高强混凝土柱大偏心受压承载能力的可靠度分析[J]. 工业建筑, 2014, 44(增刊):214-218. [4] 戎贤, 申成成, 张健新. 高强钢筋混凝土柱轴心受压承载力可靠度研究[J]. 世界地震工程, 2019, 35(3):21-27. [5] 蒋友宝, 周浩, 曹青, 等. 不同设计配筋下大偏压RC柱承载力抗震可靠度[J]. 土木建筑与环境工程, 2017, 39(6):68-77. [6] 蒋友宝, 周浩, 曹青, 等. 考虑柱偏心距随机特性的RC框架"强柱弱梁"设计可靠度[J]. 建筑结构学报, 2019, 40(9):187-195. [7] 王宏伟, 陈少杰, 周云. 圆空心钢管混凝土短柱在轴向压力作用下的可靠性分析[J]. 土木建筑与环境工程, 2018, 40(6):98-106. [8] 张丹, 杜喜凯, 王德鹏. 基于钢管再生混凝土轴压短柱承载力规程比较的可靠度分析[J]. 河北农业大学学报, 2017, 40(1):106-110. [9] 廖莹, 侯建国, 江胜华, 等. 外粘角钢加固后钢筋混凝土轴心受压柱的可靠度分析[J]. 武汉大学学报(工学版), 2009, 42(增刊), 193-197. [10] 蔡斌, 赵良龙. 碳纤维加固锈蚀钢筋混凝土柱轴压承载力的可靠性研究[J]. 建筑技术, 2018, 49(1):65-68. [11] 蔡斌, 武安盛, 赵良龙. 碳纤维加固大偏心受压柱承载力可靠性[J]. 混凝土, 2018(2):9-12. [12] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2010. [13] 中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范:GB 50367-2013[S]. 北京:中国建筑工业出版社, 2013. [14] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范:GB 50608-2010[S]. 北京:中国计划出版社, 2011. [15] VAL D. Reliability of Fiber-Reinforced Polymer-Confined Reinforced Concrete Columns[J]. Journal of Structural Engineering, 2003, 129(8):1122-1130. [16] BAJI H, RONAGH H R, LI C. Probabilistic Assessment of FRP-Confined Reinforced Concrete Columns[J]. Composite Structures, 2016, 153:851-865. [17] ALI O. Structural Reliability of Biaxial Loaded Short/Slender-Square FRP-Confined RC Columns[J]. Construction and Building Materials, 2017, 151:370-382. [18] 胡德忻, 马坤贞. 钢筋混凝土结构可靠度的研究[J]. 建筑结构学报, 1987, 8(3):18-24. [19] 张大山. CFRP加固轴心受压钢筋混凝土圆柱可靠度分析与设计[D]. 哈尔滨:哈尔滨工业大学, 2007. [20] 中华人民共和国住房和城乡建设部. 建筑结构可靠性设计统一标准:GB 50068-2018[S]. 北京:中国建筑工业出版社, 2019.
点击查看大图
计量
- 文章访问数: 68
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0