Experimental Study on Temperature Field of Cylindrical Concrete Caissons Under Surrounding Temperature
-
摘要: 以东北地区营口港码头已建成的圆形混凝土沉箱为研究对象,设计了环境温度作用下混凝土外壁温度场监测试验方案,完成了2018—2019年冬、春、夏、秋每个季节混凝土温度的7 d连续监测,同时采用LS-DYNA有限元软件建立了试验沉箱的有限元模型,分析了环境温度作用下沉箱混凝土四季的温度场和温度效应。研究表明:环境温度作用下沉箱外壁内侧混凝土温度变化缓慢,外侧混凝土随日照变化而快速变化;冬季沉箱内外侧混凝土温差和拉应力最大且超过混凝土抗拉强度;结构初始温度对冬季混凝土温度应力影响较大,当初始温度超过10 ℃时,沉箱混凝土外壁存在开裂风险,因此我国东北地区设计时应考虑环境温度作用对混凝土沉箱的温度效应。Abstract: An experiment scheme for monitoring the temperature field of cylindrical concrete caisson outer wall under surrounding temperature was designed, which was built at Yingkou Port in northeast China. The 7-day continuous monitoring of concrete temperature in each season was measured in winter, spring, summer and autumn from 2018 to 2019. The finite element model of the experimental caisson was established by LS-DYNA finite element software, and the temperature field and temperature effect of the caisson concrete under surrounding temperature were analyzed. The results showed that the temperature of inside concrete caisson changed slowly under sunshine, while that of concrete outside changed rapidly. In winter, the temperature difference between the inside and outside of the concrete caisson was the largest, and the concrete tensile stress was the largest which exceeded the tensile strength. Moreover, the initial temperature of the structure had a great influence on the temperature stress of concrete in winter. When the initial temperature exceeded 10 ℃, there was a risk of cracking on the outer wall of caisson concrete. Therefore, the temperature effect of surrounding temperature on concrete caissons in northeast China should be considered in the design.
-
Key words:
- concrete /
- caisson /
- surrounding temperature /
- sunshine /
- temperature effect /
- cracking
-
[1] 刘雪, 郭远臣, 王雪,等. 混凝土裂缝成因研究进展[J]. 硅酸盐通报, 2018, 37(7): 2173-2178. [2] 赵明华. 大体积混凝土施工中的裂缝分析及防控措施[J]. 合肥学院学报(自然科学版), 2015, 25(1): 73-76. [3] 郭风俊. 基于ANSYS的不平衡日照混凝土箱梁温度场分布研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(2): 207-212. [4] 盛兴旺, 郑纬奇, 朱志辉, 等. 小半径曲线刚构箱梁桥日照时变温度场与温度效应[J]. 交通运输工程学报, 2019, 19(4): 24-34. [5] 杨敏, 青宇, 王文飞, 等. 强日照地区混凝土多主梁T梁桥横向梯度温度效应分析[J]. 昆明理工大学学报(自然科学版), 2020, 45(3): 102-110. [6] 任翔,何青,佟阳, 等.混凝土桥塔温度场和空间应力场分析[J].郑州大学学报(工学版),2011, 32(2): 62-65. [7] 任翔, 黄平明. 温度场作用下混凝土桥塔Ⅰ型裂纹开裂面应力场分析[J]. 世界桥梁, 2011(6): 50-53. [8] ZHANG H L, LI J, LIU C G, et al. Thermal effect of the cable-stayed bridge tower[J]. Wuhan University Journal of Natural Sciences, 2003, 8(4): 1121-1125. [9] 谢尚英. 广州猎德大桥索塔日照温度效应分析[J]. 桥梁建设, 2007(2): 72-75. [10] 顾斌, 谢甫哲, 钱海, 等. 长江下游地区倒Y形混凝土桥塔的三维日照温场及其效应[J]. 中南大学学报(自然科学版), 2020, 51(1): 248-260. [11] 代璞, 钱永久. 斜拉桥H形截面混凝土桥塔短期温度特性[J]. 西南交通大学学报, 2014, 49(1): 59-65. [12] 张宁, 刘永健, 刘江, 等. 高原高寒地区H形混凝土桥塔日照温度效应[J]. 交通运输工程学报, 2017, 17(4): 66-77. [13] 陈宇, 李长辉, 黄信, 等. 圆形沉箱混凝土温度场和应力分析[J]. 硅酸盐通报, 2020, 39(5): 1491-1497. [14] 向学建, 董军, 刘昊苏, 等. 高原冬季环境下桥梁温度场各参数的确定[J]. 公路交通科技, 2012, 29(3): 58-63. [15] 薛刚, 孟煜童, 白纬宇. 大跨度混凝土连续箱梁桥运营阶段的温度场分析[J]. 工程力学, 2017(增刊1): 129-134.
点击查看大图
计量
- 文章访问数: 49
- HTML全文浏览量: 4
- PDF下载量: 4
- 被引次数: 0