Numerical Analysis of Joint of Composite Beam and Rectangular Steel Tube Under Progressive Collapse Condition
-
摘要: 采用通用有限元软件ABAQUS建立组合梁-方钢管柱刚接节点在中柱失效条件下的精细化有限元模型,研究节点在失效柱处(中柱节点)和相邻柱处(边柱节点)两种状态下的抗连续倒塌性能,考察两个节点的破坏机制和力学性能等。结果表明,中柱节点的承载力由弯曲机制、压拱效应和悬索机制共同组成,边柱节点的承载力由弯曲机制和悬索机制共同组成。其中,压拱效应显著提升了中柱节点在抗弯阶段的承载力并且延迟了悬索机制发挥作用的时间。根据能量原理将两个节点的静力性能曲线转化为更符合实际工况下的动力响应曲线,采用简化评估方法证明两个节点具有足够的抗连续倒塌能力。Abstract: The finite element model of joint of composite beam and rectangular steel tube was established to investigate the resistance under the progressive collapse scenario through finite element software ABAQUS. The middle-joint above the removed column and the side-joint adjacent to the removed column were considered to investigate the failure mode and resistance mechanism.The results showed the resistance mechanism of middle joint was flexural action, compressive arch action and catenary action, while the resistance mechanism of side joint was flexural action and catenary action. Compressive arch action significantly improved the bearing capality load resistance at flexural stage and delays the catenary action for middle joint. According to the principle of energy, the static responses of two joints were transformed into dynamic responses.With the simplified assessment method,the results indicated that these two joints had enough resistance to withstand progressive collapse.
-
Key words:
- progressive collapse /
- numerical analysis /
- rigid joint /
- compressive arch action /
- catenary action
-
[1] DoD. Design of buildings to resist progressive collapse:Unified Facilities Criteria UFC 4-023-03[S]. Washington D C:Department of Defense, 2016. [2] GSA. Alternate path analysis&design guidelines for progressive collapse resistance[S]. USA:General Services Administration, 2013. [3] 中国人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社, 2018. [4] SADEK F, MAIN J A, LEW H S, et al. Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario[J]. Journal of Structural Engineering, 2011, 137(9):881-892. [5] LI L, WANG W, CHEN Y Y, et al. Experimental investigation of beam-to-tubular column moment connections under column removal scenario[J]. Journal of Constructional Steel Research, 2013, 88(9):244-255. [6] 王伟,秦希,王俊杰.内隔板式与隔板贯通式方钢管混凝土柱-H形钢梁节点抗连续倒塌性能对比[J].建筑结构学报,2017,38(增刊1):362-368. [7] GUO L H, GAO SH, FU F, et al. Experimental study and numerical analysis of progressive collapse resistance of composite frames[J]. Journal of Constructional Steel Research, 2013, 89(10):236-251. [8] YANG B, TAN K H, XIONG G. Behaviour of composite beam-column joints under a middle-column-removal scenario:Component-based modelling[J]. Journal of Constructional Steel Research, 2015, 104(1):137-154. [9] 中国工程建设标准化协会.钢结构住宅设计规范:CECS 261:2009[S].北京:中国建筑工业出版社, 2009. [10] 张战廷,刘宇锋.ABAQUS中的混凝土塑性损伤模型[J].建筑结构,2011,41(增刊2):229-231. [11] 苏明周,李旭东,宋安良,等.含型钢边缘构件混合连肢墙弱节点受力性能有限元分析[J].广西大学学报(自然科学版),2012,37(4):636-641. [12] 高山,郭兰慧,吴兆旗,等.关键柱失效后组合框架抗倒塌试验研究及理论分析[J].建筑结构学报,2013,34(4):43-48. [13] QIAN K,LI B,MA J X. Load-carrying mechanism to resist progressive collapse of RC buildings[J]. Journal of Structural Engineering, 2014, 141(2).DOI:10.1061/(asce) st.1943-54/x.000.1046. [14] IZZUDDIN B A, VLASSIS A G, ELGHAZOULI A Y, et al. Nethercot. Progressive collapse of multi-storey buildings due to sudden column loss-part I:simplified assessment framework[J]. Engineering Structures,2007,30(5):1308-1318. [15] ASCE. Minimum design loads for buildings and other structures:ASCE/SEI 7-10[S]. American Society of Civil Engineers, 2013.
点击查看大图
计量
- 文章访问数: 76
- HTML全文浏览量: 7
- PDF下载量: 4
- 被引次数: 0