SEISMIC PERFORMANCE ANALYSIS OF ANCHORING PREFABRICATED WALL-BEAM JOINT OF STEEL TUBE BUNDLE COMPOSITE SHEAR WALL STRUCTURE
-
摘要: 为解决钢管束组合剪力墙结构现有墙-梁节点焊接量大的问题,提出一种钢管束组合剪力墙结构锚固装配式墙-梁连接节点,并利用有限元软件ABAQUS对节点的破坏模式、内力分布以及端板厚度、锚固长度和混凝土强度等级对节点抗震性能的影响规律进行研究。结果表明,钢管束组合剪力墙结构锚固装配式墙-梁连接节点滞回曲线饱满,具有良好的延性和耗能能力;端板厚度对节点的承载能力和抗震性能影响较小;随着锚固长度增加,节点抗震性能增强,承载力明显增加,但当锚固长度达到800 mm后,节点抗震性能和承载力均不再有明显改变;随着混凝土强度等级的增加,对节点的抗震性能影响较小;预埋件的承载能力逐渐由栓钉尾部混凝土局部抗压承载力控制转化为由栓钉的抗剪承载力控制。Abstract: In order to solve the problem of large amount of spot welding on existing wall-beam joints of steel tube bundle shear wall structure, a new type of anchoring prefabricated wall-beam joint for steel tube bundle shear wall structure was preposed. The failure modes, internal force distribution and the influence of plate thickness, anchorage length, and concrete strength grade on the seismic performance of the joint were studied by using the finite element software ABAQUS. The results showed that the hysteretic curve of the joint was full, showing good ductility and energy dissipation capacity. With the increase of the end plate thickness, the bearing capacity and seismic performance of the joint did not change significantly. With the increase of the anchorage length, the seismic performance of the joint was enhanced, and the bearing capacity increased significantly. However, when the anchorage length was 800 mm, the seismic performance and bearing capacity of the joint did not change significantly. With the improvement of concrete strength grade, the bearing capacity of the joint was less affected and gradually transformed from the local compressive bearing capacity of the concrete of the stud tail to the shear bearing capacity of the studs.
-
[1] 陈志华,姜玉挺,张晓萌,等. 钢管束组合剪力墙变形性能研究及有限元分析[J]. 振动与冲击, 2017, 36(19):36-45. [2] 苗志华,周新刚,张鹏,等.钢管束混凝土组合剪力墙受剪性能模拟分析[J].烟台大学学报(自然科学与工程版), 2018, 31(1):76-82. [3] 陈勇敢,胡立黎,卜科,等. 钢梁与钢管束混凝土剪力墙侧板式连接节点:CN105178441A[P]. 2015-12-23. [4] 胡立黎,王彦超, 杨强跃,等. 一种钢梁与钢管束组合结构剪力墙连接节点:CN203891208U[P]. 2014-10-22. [5] 李砚波,曹晟,陈志华,等.钢管束混凝土组合墙-梁翼缘加强型节点抗震性能试验[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(增刊1):41-47. [6] 李杰. 钢管束组合结构剪力墙与钢梁节点抗震性能研究[D].天津:天津大学, 2016. [7] 万馨,白尧尧,李相勇.钢板组合剪力墙-钢梁外肋板节点静力拉伸有限元分析[J]. 建筑钢结构进展, 2018, 20(6):16-24. [8] 安琦,王燕,王修军,等.一种装配式钢管束组合剪力墙与H型钢梁连接节点:CN110565802A[P]. 2019-12-13. [9] 杨政,徐林.薄壁喇叭型接头焊缝试验研究[J].现代焊接, 2015(12):57-60. [10] 王燕,李庆刚,董建莉,等.梁端翼缘削弱型节点空间钢框架抗震性能试验研究[J]. 建筑结构学报, 2016, 37(增刊1):192-200. [11] 曾宇,胡良明.ABAQUS混凝土塑性损伤本构模型参数计算转换及校验[J]. 水电能源科学, 2019, 37(6):106-109. [12] 聂建国,王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4):59-67,82. [13] JEROME F H. A Distributed Plasticity Model for Concrete-Filled Steel Tube Beam-Columns with Inter Layer Slip[J]. Engineering Structures, 1998, 20(8):663-676. [14] 陈志华,于越,周婷,等.方钢管混凝土柱-H形钢梁不同构造隔板贯通节点力学性能研究[J]. 建筑钢结构进展, 2021,23(2):22-29. [15] 丁发兴,倪鸣,龚永智,等.栓钉剪力连接件滑移性能试验研究及受剪承载力计算[J]. 建筑结构学报, 2014, 35(9):98-106. [16] HUU T N, SEUNG E K. Finite Element Modeling of Push-Out Tests for Large Stud Shear Connectors[J]. Journal of Constructional Steel Research, 2009, 65(10):1909-1920. [17] 谢宜琨,方国强,张宁,等. 低温下栓钉连接件抗剪承载力的数值模拟研究[J]. 工业建筑, 2019, 49(10):175-179,145. [18] 蒲黔辉,谢宏伟,樊书文,等.拔出破坏的钢混组合结构栓钉连接件承载力的分析方法[J]. 工程科学与技术, 2019, 51(1):89-95. [19] 武晓东,童乐为,薛伟辰.双钢板-混凝土组合剪力墙变形特性的有限元分析[J].建筑钢结构进展, 2017, 19(1):17-25,84. [20] 杜荣强,林皋.混凝土弹塑性多轴损伤模型及其应用[J]. 大连理工大学学报, 2007(4):567-572. [21] 刘哲锋,王玉奎,杨伟军,等.对称配筋钢筋混凝土构件基于耗能能力退化的损伤模型与性能标准[J]. 建筑结构学报, 2020, 41(9):145-153. [22] 杨岳华,刘永健.群钉连接件推出试验及塑性分析[J]. 桥梁建设, 2013, 43(4):80-86. [23] 王燕,刘芸,王鹏,等.梁柱刚性连接加强型节点的研究进展[J]. 建筑钢结构进展, 2011, 13(2):1-7,32. [24] AISC. Seismic Provisions for Structural Steel Buildings:AISC/ANSI 341-10[S]. Chicago:American Institute of Steel Construction, 2010. [25] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010.
点击查看大图
计量
- 文章访问数: 83
- HTML全文浏览量: 4
- PDF下载量: 1
- 被引次数: 0