Experimental Study on Mechanical Properties of Basalt-Fiber-Reinforced Nano-SiO2 Concrete After Being Subjected to High Temperatures
-
摘要: 对高温作用下的素混凝土、纳米SiO2混凝土、玄武岩纤维增强纳米SiO2混凝土进行抗压、劈裂抗拉和抗折试验,建立了混凝土强度预测模型。结果表明:各组混凝土抗压强度均在400 ℃时达到峰值,此时各组混凝土较常温时提高范围为3.5%~6.8%,随后逐渐降低;劈裂抗拉强度和抗折强度均随着温度的升高而逐渐降低,800 ℃时,素混凝土的劈裂抗拉强度残余率和抗折强度残余率分别为27.6%、36.2%。纳米SiO2的掺入提高了素混凝土的抗压、劈裂抗拉和抗折强度。掺入玄武岩纤维后的纳米SiO2混凝土在800℃高温后的抗压强度、劈裂抗拉强度、抗折强度最大分别提高了33.7%、15.6%、17.2%。建立的高温作用后混凝土强度预测模型的精确度较高。Abstract: The compressive, splitting tensile and flexural tests of plain concrete, nano-SiO2 concrete and basalt fiber nano-SiO2 concrete under high temperatures were carried out, and the prediction model of concrete strength that was established. According to the results, the compressive strength of each group reached a peak value at 400 ℃, at that time, each group of concrete at normal temperature increased by about 3.5% to 6.8%, and then decreased gradually, and the splitting tensile strength and flexural strength decreased gradually with the increase of temperature, at 800 ℃, the residual ratios of cracking and pulling strength and the residual ratios of flexural strength were 27.6% and 36.2%, respectively. Adding nano-SiO2 could improved the compressive, splitting tensile and flexural strength of plain concrete. The compressive strength, splitting tensile strength and flexural strength of nano-SiO2 concrete after being subjected to 800 ℃ high temperature were increased by 33.7%,15.6% and 17.2% respectively. The accuracy of concrete strength prediction after being subjected to high temperatures was high.
-
Key words:
- basalt fiber /
- nano-SiO2 concrete /
- high temperature /
- mechanical property
-
[1] 赵燕茹,刘道宽,王磊,等.玄武岩纤维混凝土高温后力学性能试验研究[J].混凝土,2019(10):72-75. [2] 朴战东.高温后玄武岩纤维混凝土力学性能试验研究[D].郑州:郑州大学,2016. [3] 秦毓雯.玄武岩纤维混凝土高温后耐久性能研究[D].徐州:中国矿业大学,2020. [4] 戎虎仁,王海龙,褚少辉,等.高温作用下不同掺量玄武岩纤维混凝土力学性能研究[J].粉煤灰综合利用,2020,34(1):56-60. [5] SIM J, PARK C, MOON D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites:Part B, 2005, 36(6):504-512. [6] HIGH C, SELIEM H M, EL-SAFTY A, et al. Use of basalt fibers for concrete structures[J]. Construction and Building Materials, 2015, 96:37-46. [7] 邱国洲,房建宏,徐安花,等.玄武岩纤维沥青混凝土高温性能研究[J].硅酸盐通报,2019,38(12):3890-3896. [8] 徐光洁.掺纳米材料混凝土耐久性研究综述[J].四川建材,2011,37(5):272-274. [9] KAWASHIMA S, HOU P, CORR D J, et al. Modification of cement-based materials with nanoparticles[J]. Cement&Concrete Composites, 2016, 36(1):8-15. [10] SHIH J, HSIAO T. Effect of nanosilica on characterization of Portland cement composite[J]. Materials Science and Engineering:A, 2006, 424(1/2):266-274. [11] 陈刚,高丹盈,王东,等.钢纤维纳米SiO2混凝土强度的试验研究[J].河北工业大学学报,2014,43(6):77-80. [12] GUNEYISI E, GESOGLU M, AZEZ O A, et al. Effect of nano silica on the workability of self-compacting concretes having untreated and surface treated lightweight aggregates[J]. Construction and Building Materials, 2016.DOI:10.1.16.cong uildmat.2016.04.055. [13] CHITHRA S, KUMAR S, CHINNARAJU K, et al. A comparative study on the compressive strength prediction models for high performance concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks[J]. Construction and Building Materials, 2016(114):528-535. [14] 燕兰,邢永明.纳米SiO2对钢纤维/混凝土高温后力学性能及微观结构的影响[J].复合材料学报,2013,30(3):133-141. [15] 李曈,张晓东,刘华新,等.高温后混杂纤维混凝土力学性能试验研究[J].铁道科学与工程学报,2020,17(5):1171-1177.
点击查看大图
计量
- 文章访问数: 158
- HTML全文浏览量: 31
- PDF下载量: 3
- 被引次数: 0