Experimental Study on Performances of Axial Compression for Prefabricated Walls Integrating Thermal Insulation and Load-Bearing
-
摘要: 通过5榀全尺寸承重保温一体化预制墙板竖向轴压试验,研究了洞口、高厚比及加载方式对轴压作用下墙板的破坏模态、承载力、裂缝发展等受压性能的影响,分析蒸压砂加气混凝土砌块与混凝土框格的整体协同受力性能。试验研究表明:集中荷载作用下,肋柱局部发生受压破坏,墙板中肋柱、肋梁和砌块整体协同受力性能较好;均布荷载作用下,在试验高厚比范围内,墙板平面外侧向位移均小于6 mm,无面外失稳破坏,随着墙体高厚比增加承载力有所减小,洞口的存在可改变墙板的破坏模态;蒸压砂加气混凝土砌块与混凝土框格相互约束形成受力整体,肋柱承担主要荷载;给出承重保温一体化预制墙板轴心受压承载力计算式,算式计算结果与试验值吻合较好。
-
关键词:
- 承重保温一体化预制墙板 /
- 承载力 /
- 试验研究 /
- 协同受力性能
Abstract: Through the vertical axial load test of 5 full-scale prefabricated walls integrating thermal insulation and load-bearing, research on the influences of opening, height-to-thickness ratios and loading methods on failure modes, bearing capacity, crack development and other compression performances of the walls under axial compression was performed and the cooperative mechanical performances of aerated concrete blocks with autoclaved sand and concrete frames were analyzed. The research indicated that under concentrated loads, concrete rib columns partly occured in compression failure, and the concrete rib columns, concrete rib beams and blocks in walls were of better cooperative mechanical performances; under uniform loads, within the teet height-to-thickness ratio ranges, the lateral displacement of the walls was less than 6 mm, no instability failure occured. As the height-to-thickness ratios of the walls increased, the bearing capacity decreased and the opening could change the failure mode of the walls; the aerated concrete blocks with autoclaved sand and the concrete frames were mutually constrained to form a force-bearing whole, and the ribs bore the main loads; the calculation formula for the axial compressive bearing capacity of the prefabricated walls integrating thermal insulation and load-bearing was given, and its calculation results were in accordance with the experimental values. -
[1] 王小平,黄鹏飞,李思婷.竖向轴压、偏压-装配式预制混凝土墙板竖向承载力试验研究与分析[J].混凝土,2019(3):134-139. [2] BENAYOUNE A,SAMAD A A A,ABANG ALI A A,et al.Response of precast reinforced composite sandwich panels to axial loading[J]. Construction and Building Materials,2007,21(3):677-685. [3] 董晶,范力.预制轻混凝土墙板轴心受压性能试验研究[J].工业建筑, 2019, 49(3):86-91. [4] 姚谦峰,黄炜,田洁,等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报,2004,25(6):67-75. [5] 黄炜,姚谦峰.密肋复合墙体抗震性能及设计理论研究[J].西安建筑科技大学学报,2005,37(1):29-35. [6] 马静,黄炜,姚谦峰.密肋壁板结构中复合墙体的竖向承载力及稳定性研究[J].西安建筑科技大学学报:自然科学版,2007,39(2):187-193. [7] 王爱民,吴敏哲,姚谦峰.密肋复合墙体竖向荷载下受力性能试验研究[J].工程抗震与加固改造, 2006, 28(3):38-43. [8] 黄炜,马静,姚谦峰.开洞密肋复合墙体的受力性能研究[J].西安建筑科技大学学报:自然科学版,2007, 39(4):492-497. [9] 常鹏,张凯,李强军.开洞对密肋复合墙体抗侧刚度的影响[J].华中科技大学学报:自然科学版,2015, 43(11):127-133. [10] 赵考重,袁长波,王莉.灌孔玻璃纤维石膏墙板轴心受压构件试验研究[J].建筑结构,2010, 40(1):117-118. [11] 张锡治,安佰平,张群礼,等.装饰保温围护承重一体化密肋复合预制外墙板及制作方法:CN109184073A[P].2018-10-26. [12] 李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004. [13] 中华人民共和国建设部.普通混凝土力学性能试验方法标准:GB 50081-2002[S].北京:中国建筑工业出版社,2003. [14] 中华人民共和国国家质量监督检验检疫总局.加气混凝土性能试验方法:GB/T 11969-2008[S].北京:中国标准出版社,2009. [15] 黄炜.密肋复合墙体抗震性能及设计理论研究[D].西安:西安建筑科技大学,2004. [16] 中华人民共和国住房和城乡建设部.密肋复合板结构技术规程:JGJ/T 275-2013[S].北京:中国建筑工业出版社,2013. [17] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 19
- PDF下载量: 4
- 被引次数: 0