Analysis on Flexural Fatigue Performance of Basalt Fiber Reinforced Concrete
-
摘要: 对4种纤维掺量的玄武岩纤维混凝土试件在3种不同应力水平下进行三点弯曲疲劳试验,利用数理统计方法对疲劳试验数据进行了弯曲疲劳寿命的威布尔分布检验,并拟合了不同失效概率下的双对数疲劳方程。结果表明:玄武岩纤维混凝土的弯曲疲劳寿命均符合两参数威布尔分布,且随着应力水平的减小,威布尔形状参数先减少后增大,弯曲疲劳寿命离散性先增大后减小;随着纤维掺量的增加,混凝土的弯曲疲劳寿命分布更加均匀,离散性更小,疲劳寿命大幅度增加。Abstract: Three-point bending fatigue test was carried out on basalt fiber reinforced concrete specimens with four kinds of fiber contents under three stress levels. Mathematical statistics was used to test the Weibull distribution of the bending fatigue life on the fatigue test data, and fitting the double logarithmic fatigue equation under different failure probabilities. The results showed that the bending fatigue life of basalt fiber reinforced concrete conformed to the two-parameter Weibull distribution, as the stress level decreased, the Weibull shape parameter first decreased and then increased, the dispersion of bending fatigue life first increased and then decreased; with the increase of fiber content, the distribution of bending fatigue life was more uniform, the dispersion was smaller, and the fatigue life was greatly increased.
-
[1] CAGGIANO A, GAMBARELLI S, MARTINELLI E, et al. Experimental characterization of the post-cracking response in hybrid steel/polypropylene fiber-reinforced concrete[J]. Construction and Building Materials, 2016,125:1035-1043. [2] XARGAY H, FOLINO P, SAMBATARO L, et al. Temperature effects on failure behavior of self-compacting high strength plain and fiber reinforced concrete[J]. Construction and Building Materials, 2018,165:723-734. [3] BURATTI N, MAZZOTTI C, SAVOIA M. Post-cracking behaviour of steel and macrosynthetic fibre reinforced concretes[J]. Construction and Buildng Materials, 2011,25(5):2713-2722. [4] 孙凌寒,邵国建,黄俊.短碳纤维局部增强混凝土疲劳性能实验研究[J].实验力学, 2009,24(5):445-452. [5] 王海良,袁磊,宋浩.短切玄武岩纤维混凝土力学性能试验研究[J].建筑结构,2013(增刊2):562-564. [6] 王钧, 马跃, 张野, 等. 短切玄武岩纤维混凝土力学性能试验与分析[J].工程力学,2014(增刊1):99-102,114. [7] 吴钊贤, 袁海庆, 卢哲安, 等. 玄武岩纤维混凝土力学性能试验研究[J].混凝土,2009(9):67-68,78. [8] 孟雪桦, 蔡迎春, 金祖权. 玄武岩纤维增强混凝土断裂能研究[J]. 混凝土与水泥制品, 2012(1):33-35. [9] SIM J, PARK C. Characteristics of basalt fiber as a strengthening material for concrete structures[J].Composites Part B:Engineering, 2005, 36(6):504-512. [10] 许金余, 范飞林, 白二雷, 等. 玄武岩纤维混凝土的动态力学性能研究[J]. 地下空间与工程学报, 2010, 6(增刊2):1665-1671. [11] 李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能[J]. 复合材料学报, 2008, 25(2):135-142. [12] 李为民, 许金余. 玄武岩纤维混凝土的冲击力学行为及本构模型[J]. 工程力学, 2009, 26(1):86-91. [13] 范飞林, 许金余, 李为民,等. 玄武岩纤维混凝土冲击力学性能试验研究[C]//第十二届全国纤维混凝土学术会议论文集. 2008. [14] DILLY R L, VOGT W L. Statistical methods for evaluating core strength results[M].ACI Special Publication, 1993:65-102. [15] PEREIRA E L, ANDER LUIS DOJ, FINEZA A G. Optimization of mechanical properties in concrete reinforced with fibers from solid urban wastes (PET bottles) for the production of ecological concrete[J].Construction and Building Materials, 2017,149:837-848. [16] 吕雁. 玻璃纤维混凝土弯曲疲劳性能及累积损伤研究[D].昆明:昆明理工大学,2012. [17] 高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000. [18] 张安哥, 朱成九, 陈梦成. 疲劳、断裂与损伤[M]. 成都:西南交通大学出版社, 2006.
点击查看大图
计量
- 文章访问数: 94
- HTML全文浏览量: 12
- PDF下载量: 1
- 被引次数: 0