MIX PROPORTION DESIGN OF HIGH-STRENGTH SEAWATER CORAL AGGREGATE CONCRETE
-
摘要: 为实现高强度海水珊瑚骨料混凝土(SCAC),综合考察总胶凝材料用量、珊瑚石最大粒径、固盐剂掺量、单方用水量、砂率等关键配合比参数的影响,通过3,7,28 d龄期下的立方体抗压强度测试,探究不同配合比SCAC的抗压强度发展规律。结果表明:在保证70%就地取材率的前提下,胶凝材料用量和单方用水量对SCAC强度的影响规律与普通混凝土类似,结合增加胶凝材料用量和降低单方用水量的方法可将28 d抗压强度提升至58 MPa。掺量适当的固盐剂能够有效放缓SCAC的早期强度发展,并为长龄期的强度增长提供保障。降低骨料最大粒径可提升SCAC的抗压强度,但其影响程度随龄期延长而逐渐减小。调增砂率带来的强度增长在低水胶比的配比中效果显著,但砂率需控制在合理范围内。Abstract: Aiming at a high-strength seawater coral aggregate concrete (SCAC),the paper thoroughly examined the effects of several key mix parameters,such as the total cementitious material dosage,the maximum size of coral stone,the amount of composite mineral admixture,the water content of concrete cube,and the sand ratio.Through compressive test on cube samples at 3 d,7 d and 28 d,the compressive strength development of SCAC with different mix proportions were investigated.The results showed that under the condition of 70% usage rate of local materials,the effects of cementing material dosage and water content on SCAC strength were similar to that of normal concrete. The combination of increasing cementing material dosage and reducing water content could improve the 28 d compressive strength up to 58 MPa.The appropriate amount of composite mineral admixture could effectively slow down the early strength development of SCAC,and helped for the long-term strength growth.Decreasing the maximum particle size of aggregate led to increased compressive strength of SCAC,but the extent of this effect was gradually decreased with age.The increase in strength owing to increase of sand ratio was found significant in the mixture with low water-binder ratio,but the sand ratio should be controlled within a reasonable range.
-
[1] 王磊,赵艳林,吕海波. 珊瑚骨料混凝土的基础性能及研究应用前景[J]. 混凝土,2012(2):99-113. [2] 邓志恒,刘兵,盛军,等. 珊瑚混凝土研究进展[J]. 硅酸盐通报,2020,39(4):1026-1034,1042. [3] WANG A,LYU B,ZHANG Z,et al. The Development of Coral Concretes and Their Upgrading Technologies:A Critical Review[J]. Construction and Building Materials,2018,187:1004-1019. [4] 韩宇栋,王振波,刘伟康,等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报,2021,24(4):213-218. [5] WANG J,FENG P,HAO T,et al.Axial Compressive Behavior of Seawater Coral Aggregate Concrete-Filled FRP Tubes[J].Construction and Building Materials,2017,147:272-285. [6] 伊超,冯鹏,孙丽,等. 复材增强约束珊瑚骨料混凝土柱抗震性能试验研究[J]. 工业建筑,2019,49(9):48-52,94. [7] 赵艳林,韩超,张栓柱,等. 海水拌养珊瑚混凝土抗压龄期强度试验研究[J]. 混凝土,2011(2):43-45. [8] 荣华,王畅.基于微结构改造的水泥混凝土材料耐久性试验研究[J]. 水利水电技术,2019,50(11):155-159. [9] 陕亮,龚亚琦,张亮. 钢-聚丙烯混杂纤维混凝土与变形钢筋粘结破坏试验研究[J]. 水利水电技术,2020,51(1):206-213. [10] 郑秀梅,杨国生,黄杨. 南海海域全珊瑚海水混凝土抗压强度试验研究[J]. 混凝土,2019(5):135-142. [11] 糜人杰,余红发,麻海燕,等. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程,2016,34(4):47-54. [12] 周文,周永祥,宋普涛,等. 低品位全珊瑚骨料混凝土强度提升技术研究[J]. 混凝土与水泥制品,2019(4):1-3. [13] 巩位,余红发,麻海燕,等. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报,2019,33(22):3732-3737. [14] 沈锦林. 海水拌养珊瑚礁砂混凝土抗压强度试验研究[J]. 土工基础,2016,30(4):524-526. [15] 袁征. 高强珊瑚混凝土配合比工艺与抗压特性研究[D]. 南宁:广西大学,2017. [16] LIU B,GUO J,ZHOU J,et al. The Mechanical Properties and Microstructure of Carbon Fibers Reinforced Coral Concrete[J]. Construction and Building Materials,2020,249.DOI: 10.1016/j.conbuildmat.2020.118771 [17] 韩宇栋,紫民,岳清瑞,等. 一种海水珊瑚骨料混凝土:105936593[P]. 2018-3-20. [18] 韩宇栋,郝挺宇,王建平,等. 一种用于海水珊瑚骨料混凝土的固盐剂:106396531[P]. 2017-2-15.
点击查看大图
计量
- 文章访问数: 207
- HTML全文浏览量: 31
- PDF下载量: 0
- 被引次数: 0