Research on Critical Moment of Lateral Restrained Beams Under End Moments
-
摘要: 为建立端弯矩作用下等间距布置侧向支承简支钢梁临界弯矩的计算方法,取两侧向支承点之间的各梁段为简支梁,分析了各梁段的端弯矩比例系数随支承钢梁端弯矩比例系数和侧向支承数量变化而变化的特征,取支承钢梁最大端弯矩所在梁段为两端简支的计算梁段,采用理论分析和数值模拟相结合的方法,揭示了纯弯工况和非纯弯工况下计算梁段与其他梁段的相关关系,得到了支承数量n=1~4时计算梁段临界弯矩系数C1的数值和相关作用系数α的表达式,把支承钢梁临界弯矩的计算转化为计算梁段临界弯矩的计算。最后,分别采用系数C1和α以及现行国家标准的临界弯矩计算方法计算了支承钢梁的临界弯矩,并与有限元数值进行对比,验证了系数C1和α以及现行国标的临界弯矩计算方法的精度。研究表明,系数C1和α在侧向支承钢梁临界弯矩的计算上具有较高的精度,而GB 50017-2017《钢结构设计标准》中的βb系数和GB 50018-2002《冷弯薄壁型钢结构技术规范》中的C1系数,在纯弯工况下具有较高的精度,而非纯弯工况时则存在偏不安全或偏过于安全的情况。Abstract: In order to establish the calculation method for the critical moment of simply-supported steel beams with lateral restraints equally distributed along the span, the segments between two lateral restraints were treated as simply-supported steel beams firstly. Then, the characteristic of the end moment ratio for these segments were revealed for variable number of lateral restraints and end moment ratio of lateral restrained steel beams. A segment with the maximum end moment of the lateral restrained steel beam, which named as the calculated segment, was selected for determining the critical moment. The interaction between the calculated segment and other segments were analyzed and revealed for pure bending and impure bending theoretically and numerically. Values of the coefficient C1 and the expressions of the interaction coefficient α were proposed, by which the calculation of the critical moment for lateral restrained steel beams was transformed to the calculation of the critical moment for the calculated segment. Finally, comparisons were carried ont between the critical moments obtained from the proposed method, the method in current design standards and the numerical results. The results showed that the values of the coefficient C1 and the expressions of the interaction coefficient α were accurate enough for determining the critical moment of lateral restrained steel beams subjected to end moments, while the βb coefficient provided in Standard for Design of Steel Structures (GB 50017-2017) and the C1 provided in Technical Code of Cold-Formed Thin-Wall Steel Structures (GB 50018-2002) were accurate for pure bending, but for impure bending, unsafe or too safe predictions were generated.
-
[1] 刘占科,支圆圆,文天星,等. 复合荷载作用下钢梁弯扭屈曲的临界弯矩:(Ⅰ)理论研究[J]. 建筑结构学报,2020,41(8):154-164. [2] 毛荷月,童根树. 风吸力下跨中设置一根拉条的连续两跨C形檩条的弯扭屈曲[J].工业建筑,2017,47(2):151-157,4. [3] 过轶青,张文福. 简支钢梁在跨中隅撑作用下受力性能研究[J].工业建筑,2019,49(2):124-130,134. [4] Nethercot D A, Trahair N S. Lateral buckling approximations for elastic beams[J]. The Structural Engineer, 1976, 54(6):197-204. [5] 陈绍蕃. 有约束梁的整体稳定[J]. 钢结构,2008, 23(8):20-25. [6] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社, 2018. [7] 魏世杰. 工字形钢梁整体稳定性实用验算公式[J]. 大连理工大学学报, 1981, 21(增刊2):113-121. [8] 中华人民共和国建设部. 冷弯薄壁型钢结构技术规范:GB 50018-2002[S]. 北京:中国计划出版社, 2002. [9] 方山峰. 梁柱弹性弯扭屈曲的临界弯矩[J]. 武汉水利电力学院学报,1985(3):20-25. [10] 方山峰. 冷弯薄壁型钢梁的整体稳定计算[J]. 工业建筑,1986,16(4):41-45.
点击查看大图
计量
- 文章访问数: 76
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0