NUMERICAL SIMULATION ANALYSIS OF WIND PRESSURE CHARACTERISTICS ON STREAMLINED MEMBRANE STRUCTURE WITH A SINGLE RIDGE
-
摘要: 风荷载是大跨度空间结构及膜结构设计的控制荷载。以流线型单脊膜结构的实际工程为例,基于Reynolds时均方程,选取剪切应力传输湍流模型(SST k-ω模型),采用ANSYS-CFX14.0流体分析软件对膜表面的风压分布进行数值模拟。通过对比分析不同风向角下膜表面风压分布规律、平均风压系数及湍流特征,得出该结构最不利风向角取值范围以及膜表面不同分区平均风压系数、风荷载体型系数值。结果表明:60°~90°为此结构的最不利风向角,在此风向角区间内,膜结构表面的湍流特性复杂多变。迎风面屋檐形成较高的正压,背风面屋脊形成较高的负压,该部位更易遭受破坏;整个背风面形成较大的负压区,在结构中部产生明显的漩涡,主要表现为吸力。Abstract: A wind load is the control load in the design of long-span space structure and membrane structure. Taking a practical engineering of streamlined membrane structure with a single ridge as an example, based on the Reynolds time averaged equation and shear stress transfer turbulence model (the SST k-ω model), the distribution of wind pressure on the membrane surface was simulated by ANSYS-CFX 14.0. By comparing and analyzing the distribution of wind pressure, the coefficients of mean wind pressure and turbulence characteristics on the membrane surface in different wind directions, the value ranges of the most unfavorable wind directions, the coefficients of mean wind pressure and the shape coefficients of wind load in different zones on the membrane surface were obtained. The study results showed that the most unfavorable wind direction were between 60° and 90° for the structure, and in the wind directions, the turbulence characteristics on the surface of membrane structure were complex and changeable. The eaves in the windward side formed a higher positive pressure, while the roof ridge in the leeward side formed a higher negative pressure, which made the part more easily damage. A large negative pressure area was formed on the ridge of the leeward side, and the obvious vortex was generated in the middle of the structure, which was mainly represented by suction.
-
[1] 顾明, 陆海峰. 膜结构风荷载和风致响应研究进展[J]. 振动与冲击, 2006, 25(3):25-28. [2] 孙晓颖, 武岳, 沈世钊. 鞍形屋盖平均风压分布特性的数值模拟研究[J]. 工程力学, 2006, 23(10):7-14. [3] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012. [4] 武岳, 杨庆山, 沈世钊. 膜结构分析理论研究现状与展望[J]. 工程力学, 2014, 31(2):1-14. [5] 刘锡良, 周颖. 风荷载的集中模拟方法[J]. 工业建筑, 2005, 35(5):81-84. [6] 庄智, 余元波, 叶海, 等. 建筑室外风环境CFD模拟技术研究现状[J]. 建筑科学, 2014, 30(2):108-114. [7] 吴立, 张华林, 彭兴黔, 等. 大跨屋盖风荷载风洞试验及数值模拟[J]. 华侨大学学报(自然科学版), 2010, 31(3):327-331. [8] 李宇, 王阳, 叶黎鹏, 等. 椭球形多曲面组合屋盖结构风荷载特性研究[J]. 广西大学学报(自然科学版), 2020, 45(1):121-128. [9] 聂少锋, 周绪红, 石宇, 等. 低层四坡屋面房屋风荷载的风洞试验与数值模拟[J]. 建筑科学与工程学报, 2013, 30(3):39-49. [10] 聂少锋, 周绪红, 陶莹, 等. 平面T形低矮房屋风荷载特性风洞试验与数值分析[J]. 建筑科学与工程学报, 2016, 33(2):31-40. [11] ANDERSON J D. Computational Fluid Dynamics:The Basics with Applications[M]. Beijing:Tshinghua Press, 2012. [12] 何艳丽. 空间结构风工程[M].上海:上海交通大学出版社, 2012. [13] BAETKE F, WERNER H, WENGLE H. Numerical Simulation of Turbulent Flow over Suface-Mounted Obstacles with Sharp Edges and Corners[J]. Wind Eng. Ind. Aerodyn, 1990(35):129-147. [14] BEKELE S A, HANGAN H. A Comparative Investigation of the TTU Pressure Envelope-Numerical Versus Laboratory and Full Scale Results[J]. Wind and Structures an International Journal, 2002, 5(2):337-346. [15] 汪从军, 黄本才, 徐晓明, 等. 环状悬挑屋盖平均风压与风环境数值模拟[J]. 同济大学学报(自然科学版), 2006, 34(6):711-725. [16] 王秀丽, 王宪统. 多折面体型悬挑钢桁架屋盖结构的风压分布数值模拟研究[J]. 空间结构, 2015, 21(1):26-33.
点击查看大图
计量
- 文章访问数: 103
- HTML全文浏览量: 20
- PDF下载量: 2
- 被引次数: 0