RESEARCH ON FORECASTS FOR ULTIMATE DISPLACEMENT OF TUNNELS BASED ON THE DE-GP ALGORITHM IN CONSTRUCTION PROCESS
-
摘要: 针对数值模拟隧道开挖过程中极限位移的求解参数众多、难以获取且计算耗时长的问题,将高斯算法(GP)与差异进化算法(DE)相结合,选用DE算法取代共轭梯度法实现了在训练过程中对GP超参数的选取,解决了共轭梯度法对初始值过于依赖且容易陷于局部最优的问题,提高了GP泛化性能,构建了用于隧道开挖过程极限位移预测的DE-GP方法,简化了隧道极限位移计算求解过程。以某公路隧道作为分析对象,预测分析隧道开挖时的极限位移。结果显示:DE-GP算法的泛化性能优于GP算法和最小二乘支持向量机算法(LSSVM);极限位移的预测结果与数值计算结果比较接近,预测精度较高,提高了计算速度,为隧道极限位移的预测提供了更加高效的求解途径。Abstract: To solve the problems of too many parameters, difficult to obtain and longer time-consuming in numerical simulations of ultimate displacement in the process of tunnelling, the Gaussian process algorithm (GP) combined with the differential evolutionary algorithm (DE) was adopted. The selection of GP hyperparameters in the training process was realized by the DE instead of the conjugated gradient method, which solved the problem that the conjugated gradient method was too dependent on the initial values and easy to fall into local optimal, and improved generalization performances of the GP. A DE-GP method for predicting ultimate displacement during tunnelling was proposed, which simplified the calculation process of ultimate displacement. The ultimate displacement of a highway tunnel during tunnelling was predicted and analyzed. The results showed that the DE-GP coupled model had a better generalization performances than the GP and the LS-SVM algorithm; the forecasting results of ultimate displacement agreed well with the numerical calculations, and the computational efficiency had obviously improved; the method provided a new way to calculate the ultimate displacement.
-
Key words:
- tunnel /
- Gaussian process /
- differential evolution /
- ultimate displacement /
- numerical calculation
-
[1] 朱永全.隧道稳定性位移判别准则[J].中国铁道科学, 2001, 22(6):80-83. [2] 李晓红, 王宏图, 贾剑青, 等.隧道及地下工程围岩稳定性及可靠性分析的极限位移判别[J].岩土力学, 2005, 26(6):850-854. [3] 朱永全, 张素敏, 景诗庭.铁路隧道初期支护极限位移的意义及确定[J].岩石力学与工程学报, 2005, 24(9):1594-1598. [4] 徐东强, 燕鹏, 李彦奇, 等.公路山岭隧道初期支护极限相对位移的确定[J].隧道建设, 2017(9):34-40. [5] 冯夏庭.智能岩石力学导论[M].北京:科学出版社, 2000:111-116. [6] 姜谙男.基于PSO-SVM非线性时序模型的隧洞围岩变形预报[J].岩土力学, 2007(6):1176-1180. [7] 张可能, 胡达, 何杰, 等.基于Kriging时空统一模型的隧道动态施工位移预测[J].中南大学学报(自然科学版), 2017, 48(12):3328-3334. [8] 祝彦知, 魏风冉.盾构隧道地表沉降模糊随机可靠度分析[J].工业建筑, 2017, 47(7):114-116. [9] 肖和华, 曾浩中.基于多模型加权组合算法的公路边坡位移预测[J].公路工程, 2016, 41(2):14-18. [10] 李兴盛.基于DE-GP协同优化算法的隧道极限位移预测[J].现代隧道技术, 2021, 58(2):78-85. [11] 刘开云, 方昱, 刘保国, 等.隧道围岩变形预测的进化高斯过程回归模型[J].铁道学报, 2011, 33(12):101-106. [12] 苏国韶, 张克实, 吕海波.位移反分析的粒子群优化-高斯过程协同优化方法[J].岩土力学, 2011, 32(2):510-515. [13] 刘开云, 方昱, 刘保国.基于进化高斯过程回归算法的隧道工程弹塑性模型参数反演[J].岩土工程学报, 2011(6):883-889. [14] STORN R, PRICE K.Differential Evolution:A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization, 1997(11):341-369. [15] 马莎, 肖明.基于突变理论和监测位移的地下洞室稳定评判方法[J].岩石力学与工程学报, 2010, 29(增刊2):3812-3819. [16] 左清军, 吴立, 陆中玏, 等.浅埋偏压隧道洞口段软弱围岩失稳突变理论分析[J].岩土力学, 2015(增刊2):424-430.
点击查看大图
计量
- 文章访问数: 56
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0