STUDY ON ASEISMIC DESIGN OF RC FRAME STRUCTURE WITH ENERGY DISSIPATIVE OUTDOOR-WALL CLADDING PANELS BASED ON ENERGY EQUILIBRIUM
-
摘要: 含减震外挂墙板钢筋混凝土框架结构在墙板与主体结构间引入U形钢板消能器,可有效利用两者间的相对水平变形耗散地震能量,从而提高结构的抗震性能。该新型结构通过合理的性能化设计,可以使得作为预期损伤部位的U型钢板消能器和框架梁、柱端塑性铰在设防烈度地震和罕遇地震下先后屈服耗散地震能量,使主体结构在设防烈度地震下保持弹性,罕遇地震下保持低损伤,从而具有良好的韧性。在已有研究的基础上,提出了适用于该种结构的基于能量平衡的实用抗震设计方法。采用该方法,设计了一栋8层含减震外挂墙板钢筋混凝土框架结构,并对其进行设防烈度地震和罕遇地震下的弹塑性时程分析。结果表明:所设计结构能够实现不同水准地震作用下的预期性能目标,该设计方法具有合理性和可行性。Abstract: The reinforced concrete (RC) frame structure with energy-dissipative outdoor-wall cladding panels (EDCP) is a new kind of structural system, in which the U-shaped steel dampers (USDs) are used to connect the cladding panels and the frame structure. The USDs can utilize the relative slip between the panels and frame to dissipate seismic energy, and thus enhance the aseismic performance of structure. The USDs and plastic hinges of beams and columns can successively yield and dissipate seismic energy under the action of fortification and rare earthquakes through rational performance-based design, which means that the main structure can remain elastic under earthquakes and low-damage under rare earthquakes, and thus has a satisfactory resilience. An energy equilibrium-based practical seismic design procedure was proposed for such structure based on the previous study, and the procedure was used to design an 8-story RC frame structure with energy-dissipative outdoor-wall cladding panels. Moreover, nonlinear time-history analysis under the action of fortification or rare earthquakes were conducted to verify the aseismic performance of the structure. The results indicated that the structure could achieve the expected performance objectives under the action of different earthquake intensities and the proposed design procedure was reasonable and feasible.
-
[1] LOSCH E D, HYNES P W, JR R A, et al. State of the Art of Precast/Prestressed Concrete Sandwich Wall Panels[J]. PCI Journal, 2011, 56(2):131-176. [2] 薛伟辰, 王东方. 预制混凝土板、墙体系发展现状[J]. 工业建筑, 2002, 32(12):57-60. [3] WILSON J L, ROBINSON A J, BALENDRA T. Performance of Precast Concrete Load-Bearing Panel Structures in Regions of Low to Moderate Seismicity[J]. Engineering Structures, 2008, 30(7):1831-1841. [4] 种迅, 姚华庭, 蒋庆, 等. 含线连接夹心保温外挂墙板装配式混凝土剪力墙结构抗震性能研究[J]. 建筑结构学报, 2019, 40(12):51-59. [5] 种迅, 宋磊, 陈长林, 等. 含减震外挂墙板装配式混凝土剪力墙结构抗震性能研究[J]. 工业建筑, 2020, 50(1):40-46. [6] LEELATAVIWAT S. Drift and Yield Mechanism Based Seismic Design and Upgrading of Steel Moment Frames[D]. Lansing:University of Michigan, 1998. [7] LEE S S, GOEL S C, CHAO S H, et al. Performance-Based Seismic Design of Steel Moment Frames Using Target Drift and Yield Mechanism[C]//Proceedings of the 13th World Conference on Earthquake Engineering.2004. [8] GOEL S C, LIAO W C, BAYAT M R, et al. Performance-Based Plastic Design (PBPD) Method for Earthquake-Resistant Structures:An Overvie[J]. The Structural Design of Tall and Special Building, 2010, 19(1):115-137. [9] YANG T Y, TUNG D P, LI Y J. Equivalent Energy Design Procedure for Earthquake Resilient Fused Structures[J]. Earthquake Spectra, 2018, 34(2):795-815. [10] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010. [11] American Society of Civil Engineers(ASCE).Seismic Rehabilitation of Existing Buildings:ASCE/SEI 41[S]. Reston:ASCE, 2006. [12] HOUSNER G W. Limit Design of Structures to Resist Earthquakes[C]//Proceedings of the 1st World Conference on Earthquake Engineering. 1956:1-13. [13] UANG C M, BERTERO V V. Use of Energy as a Design Criterion in Earthquake-Reistant Design[R]. Report No. UCB/EERC-88/18.Berkeley:Earthquake Engineering Research Center, University of California, 1988. [14] CHAO S H, GOEL S C, LEE S S. A Seismic Design Lateral Force Distribution Based on Inelastic State of Structures[J]. Earthquake Spectra, 2007, 23(3):547-569. [15] International Conference of Building Officials. Uniform Building Code:UBC 8-1[S]. Boca Raton:Taylor Francis, 1997. [16] YANG T Y, MOEHLE J P, BOZORGNIA Y, et al. Performance Assessment of Tall Concrete Core-Wall Building Designed Using Two Alternative Approaches[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(11), 1515-1531. [17] American Society of Civil Engineers(ASCE).Minimum Design Loads for Buildings and Other Structures Including Supplement 1:ASCE7-05[S]. Reston:American Society of Civil Engineering (ASCE), 2005. [18] 北京金土木软件公司. SAP2000中文版使用指南[M]. 北京:人民交通出版社, 2011. [19] The Pacific Earthquake Engineering Research Center.The Pacific Earthquake Engineering Research Center Ground Motion Database[EB/OL].https://ngawest2.berkeley.edu. [20] 钱稼茹, 徐福江. 钢筋混凝土梁基于位移的变形能力设计方法[J]. 四川建筑科学研究, 2007(2):1-3. [21] 钱稼茹, 徐福江. 钢筋混凝土柱基于位移的变形能力设计方法[J]. 建筑结构, 2007(12):30-32. [22] 崔济东, 沈雪龙. PERFORM-3D原理与实例[M]. 北京:中国建筑工业出版社, 2017. [23] KENT D C, PARK R. Flexural Members with Confined Concrete[J]. Journal of the Structural Division, 1971, 97(7):1969-1990. [24] BAIRD A, SMITH T, PALERMO A, et al. Experimental and Numerical Study of U-shape Flexural Plate (UFP) Dissipators[C]//New Zealand Society for Earthquake Engineering 2014 Technical Conference. 2014. [25] 种迅, 侯林兵, 解琳琳, 等. U型金属阻尼器受力性能和数值模拟分析方法研究[J]. 建筑结构, 2021, 51(1):114-120.
点击查看大图
计量
- 文章访问数: 115
- HTML全文浏览量: 16
- PDF下载量: 0
- 被引次数: 0