INFLUENCE OF RELATIVE DENSITIES FOR SURROUNDING ROCKS ON STRATUM SUBSIDENCE DURING TUNNELLING
-
摘要: 作为衡量土力学特性的关键指标,相对密实度也是划分围岩等级的重要指标,其对隧道掘进时地层沉降和应力的影响十分重大。基于北京工业大学自主开发的盾构隧道掘进模型试验平台,通过开展不同相对密实度土层中隧道的掘进试验,系统测量地表和地层中的沉降和隧道周边的应力。试验结果表明:随着相对密实度的增大,地表和地层中沉降槽的形状由高斯函数分布形变为三角形,深度和宽度均越来越小;掘进过程中地表沉降的出现更加滞后;拱顶和拱肩处的应力路径变得越来越陡,使土体出现明显的剪胀,从而导致地层沉降槽的形状发生上述变化。因此,在模拟隧道掘进时,应考虑不同相对密实度土层的剪胀性,才能合理地预测地表的沉降。Abstract: As a key index to judge the mechanical properties of soil, the relative density is also an important index for the classification of surrounding rock grades. It is of great significance to study the influence on stratum subsidence and stress during tunnelling. Based on the model test platform for shield tunnels developed by Beijing University of Technology, tunnelling tests were conducted in soil with different relative densities, the surface or stratum subsidence and stress during tunnelling were measured systematically. The test results showed that:with the increase of relative densities, the shapes of subsidence troughs for the stratum changed from the distribution shape of Gaussian Function to the triangular shape, the depth and width were smaller and smaller; the subsidence of the surface lagged more behind the process of being tunnelled; the stress paths at the arch crown and arch shoulder became steeper and steeper, that caused the obvious dilation in soils and brought about the above change laws in the shape of the the stratum subsidence troughs. Therefore, in simulations of tunnelling, it was necessary to consider the dilatancy of soil to ensure the rational predications on surface subsidence.
-
Key words:
- relative density /
- shield tunnel /
- model test /
- subsidence /
- stress path /
- dilatancy
-
[1] 朱逢斌, 缪林昌, 林水仙. 砂土中盾构动态施工室内模型试验可行性研究[J]. 工业建筑, 2016, 46(4):88-92. [2] 何洵, 李铀.隧道应力扰动区及其影响因素分析[J]. 铁道科学与工程学报, 2019, 16(11):2782-2790. [3] 徐东强, 李彦奇, 燕鹏. 隧道不同开挖方式初期支护极限位移值[J]. 工业建筑, 2018, 48(2):110-115. [4] GALLI G, GRIMALDI A, LEONARDI A. Three-Dimensional Modelling of Tunnel Excavation and Lining[J]. Computers and Geotechnics, 2004, 31(3):171-183. [5] 郑刚, 张扶正, 张天奇, 等. 盾构隧道开挖及补偿注浆对地层扰动影响的室内试验及数值模拟研究[J]. 岩土工程学报, 2016, 38(10):1741-1753. [6] 杨志浩, 方勇, 杨斌, 等. 公路隧道下穿倾斜煤层采空区室内开挖模型试验[J]. 地下空间与工程学报, 2017, 13(4):974-981, 1055. [7] 霍润科, 李茂达, 李静, 等. 偏压软弱围岩隧道不同施工方案的数值模拟及比较分析[J]. 工业建筑, 2015, 45(2):95-100. [8] 刘纪峰, 刘波, 张会芝. 盾构隧道致地层沉降的物理模型试验研究[J]. 工业建筑, 2011, 41(3):91-98. [9] FARGNOLI V, BOLDINI D, AMOROSI A. TBM Tunnelling-Induced Settlements in Coarse-Grained Soils:The Case of the New Milan Underground Line 5[J]. Tunnelling and Underground Space Technology, 2013, 38:336-347. [10] 王正兴, 缪林昌, 吕伟华. 砂土中隧道施工条件下管土相互作用的室内模型试验研究[J]. 工业建筑, 2017, 47(2):94-98. [11] 张礼仁, 张友良, 谭飞, 等. 隧道不同级别围岩监测与数值模拟分析[J]. 隧道建设, 2014, 30:131-134. [12] NAKAI T, XU L, YAMAZAKI H. 3D and 2D Model Tests and Numerical Analyses of Settlements and Earth Pressures due to Tunnel Excavation[J]. Soils and Foundations, 1997, 37(3):31-42. [13] 邓崴, 潘建平, 曾雅钰琼. 砂黏复合地层盾构隧道施工地表横向沉降分析[J]. 科学技术与工程, 2019, 19(18):271-275. [14] 王俊, 何川, 胡瑞青, 等. 土压平衡盾构掘进对上软下硬地层扰动研究[J]. 岩石力学与工程学报, 2017, 36(4):953-963. [15] FRANZA A, MARSHALL A M, ZHOU B. Greenfield Tunnelling in Sands:The Effects of Soil Density and Relative Depth[J]. Geotechnique, 2019, 69(4):297-307. [16] ZHOU B, MARSHALL A M, YU H S. The Effect of Relative Density on Settlements Above Tunnels in Sands[J]. Tunnelling and Underground Construction, 2014:96-105. [17] MARTO A, SOHAEI H, HAJIHASSANI M. Effects of Tunnel Depth and Relative Density of Sand on Surface Settlement Induced by Tunneling[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(3):1045-1052. [18] TABRIZI M E, FAZEL A A, FARAJI S. An Experimental Study on the Effect of Relative Density on the Settlement Induced by TBM[J]. Journal of Engineering Geology, 2017, 12(1):27-40.
点击查看大图
计量
- 文章访问数: 127
- HTML全文浏览量: 19
- PDF下载量: 0
- 被引次数: 0