STUDY ON DYNAMIC CHARACTERISTICS OF NEW TYPES OF ASEISMIC SUPPORTS IN UTILITY TUNNELS
-
摘要: 为降低地震对城市地下综合管廊内部管道运营安全的影响,设计了两种新型抗震支墩并建立了围岩-管廊传统支墩体系和围岩-管廊抗震支墩体系的动力有限元模型;在地震波作用下,对围岩-管廊支墩体系进行了动力学特性数值模拟分析和时程分析。动力学特性数值模拟分析结果表明:围岩-管廊传统支墩体系和围岩-管廊抗震支墩体系的前10阶固有频率均较低,受地震波影响易产生共振,影响管线的安全;结构体系的固有频率不受内部支墩结构和布置形式的影响,可以根据技术要求改变支墩形式,提高其抗震性能。动力时程分析结果表明:与传统支墩体系相比,抗震支墩A体系中管道的最大应力、最大加速度和最大位移分别降低了62%、45%、52%;抗震支墩B体系中则降低了51%、31%、36%,两种新型抗震支墩的抗震性能均显著优于普通支墩,能有效保障管线在地震作用下的安全性。Abstract: In order to reduce seismic impacts on the operation safety of internal pipes in urban utility tunnels, two new types of seismic supports were developed, the finite element models of the traditional rock-tunnel support system and two types of rock-tunnel aseismic support systems were constructed, and the dynamic characteristics of the two systems were numerically simulated. The dynamic time-history analysis was conducted on the rock-tunnel support systems. Results of the numerical simulation indicated that:1) the first ten natural frequencies of the both systems were lower, which made the systems prone to resonance under seismic action and threaten the safety of pipelines; 2) the natural frequencies of systems were not influenced by the types and arrangements of internal supports, thus the support types could be changed according to technical requirements to improve aseismic performances of utility tunnels. Time-history analysis indicated that:compared with the traditional rock-tunnel support system, the maximum stress, acceleration and displacement of pipelines in the aseismic support system A were reduced by 62%, 42% and 52% respectively; while those ones for the aseismic support B reduced by 51%, 31% and 36%. The aseismic performances of the two new types of aseismic supports were significantly better than the traditional.
-
[1] HASHASH Y, HOOK J, SCHMIDT B, et al. Seismic Design and Analysis of Underground Structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4):247-293. [2] KIMURA H, ITOH T, IWATA M, et al. Application of New Urban Tunneling Method in Baikoh Tunnel Excavation[J]. Tunnelling and Underground Space Technology, 2005, 20(2):151-158. [3] CAULFIELD J, KIEFFER S, TSZTOO D, et al. Seismic Design Measures for the Retrofit of the Claremont Tunnel[C]//Proceedings of RETC.2005:1128-1138. [4] NAKANURA G, KAWASHIMA K, WATANABE G. Evaluation on Seismic Retrofit Measures for Common Utility Tunnels Based on Cyclic Loading Tests[C/OL]//Proceedings of Civil Engineering Institute. 2006:489-508. https://doi.org/10.2208/jsceja.62.489. [5] DEBIASI E, GAJO A, ZONTA D. On the Seismic Response of Shallow-Buried Rectangular Structures[J]. Tunnelling and Underground Space Technology, 2013, 38(39):99-113. [6] BAZIAR M H, MOGHADAM M R, KIM D S, et al. Effect of Underground Tunnel on the Ground Surface Acceleration[J]. Tunnelling and Underground Space Technology, 2014, 44(3):10-22. [7] TSINIDIS G, PITILAKIS K, MADABHUSHI G, et al. Dynamic Response of Flexible Square Tunnels:Centrifuge Testing and Validation of Existing Design Methodologies[J]. Geotechnique, 2015, 65(5):401-417. [8] PITILAKIS K, TSINIDIS G. Performance and Seismic Design of Underground Structures Engineering Design[J]. Earthquake Geotechnical Engineering Design, 2014, 28:279-340. [9] 岳庆霞.地下综合管廊地震反应分析与抗震可靠性研究[D]. 上海:同济大学, 2007. [10] 李杰, 史晓军, 孟海.地下综合管廊抗震非一致激励大型振动台试验[C]//中国工程院第三次地下工程与基础设施公共安全学术讨论会文集.郑州:黄河水利出版社, 2007:157-165. [11] JIANG L Z, CHEN J, LI J. Seismic Response of Underground Utility Tunnels:Shaking Table Testing and FEM Analysis[J]. Earthquake Engineering and Engineering Vibration, 2010, 9:555-567. [12] CHEN J, JIANG L, LI J, et al. Numerical Simulation of Shaking Table Test on Utility Tunnel Under Non-Uniform Earthquake Excitation[J]. Tunnelling & Underground Space Technology, 2012, 30(4):205-216. [13] 冯瑞成. 共同沟振动台模型试验与抗震性能评价[D]. 哈尔滨:哈尔滨工业大学, 2007. [14] TANG A P, GAI Z B, WEN A H, et al. Seismic Isolation Simulation of Pipeline in Utility Tunnel[C]//International Conference on Pipelines and Trenchless Technology. 2013:1534-1544. [15] 由浩宇.共同沟管道隔震分析[D]. 哈尔滨:哈尔滨工业大学, 2011. [16] 叶飞. 管道共同沟结构体系地震反应分析[D]. 哈尔滨:中国地震局工程力学研究所, 2014. [17] 刘述虹. 典型综合管廊体系地震响应分析[D]. 哈尔滨:中国地震局工程力学研究所, 2016. [18] 杜盼辉. 非均匀场地中综合管廊的地震响应特点[D]. 哈尔滨:哈尔滨工业大学, 2017. [19] 屈健. 斜入射地震波作用下综合管廊的动力响应[D]. 哈尔滨:哈尔滨工业大学, 2017. [20] 赵丹阳. 地下综合管廊交叉节点地震反应分析[D]. 哈尔滨:哈尔滨工业大学, 2017. [21] 张景威. 地下综合管廊结构地震易损性分析[D]. 大连:大连理工大学, 2017. [22] 李铎. 脉冲效应及地震斜人射对管廊的动力响应研究[D]. 大连:大连理工大学, 2018. [23] 王鹏宇. 预制综合管廊地震响应分析[D]. 哈尔滨:中国地震局工程力学研究所, 2018. [24] 黄文翾.预制拼装式城市地下综合管廊地震动力响应研究[D]. 成都:西南交通大学, 2018. [25] 黄臣瑞. 上下分体预制装配式综合管廊地震响应研究[D]. 长沙:华南理工大学, 2018. [26] XU D, QI D, YE W J. Experimental Study on Seismic Performance of Prefabricated Utility Tunnel[J]. Advances in Civil Engineering, 2019(9):1-14. [27] 中华人民共和国建设部.室内管道支架及吊架:GJBT-630(03S402)[S]. 北京:中国计划出版社, 2005.
点击查看大图
计量
- 文章访问数: 140
- HTML全文浏览量: 15
- PDF下载量: 3
- 被引次数: 0