A MODIFIED MODEL OF BOXLUCAS1 STRESS TRANSFER FOR LOOSE GRANULAR MATERIALS
-
摘要: 为了解松散颗粒材料中颗粒粒径级配变化对材料力学性质的影响,开展了不同粗砂颗粒含量砂样的直剪试验,得到了不同法向应力条件下的应力-应变曲线和剪切强度。根据BoxLucas1应力传递模型曲线模型对试验结果进行拟合,模型中考虑了粗砂含量的变量因素,建立了适用于松散颗粒材料强度的力学修正模型,模型参数均可通过试验获得。该模型可同时考虑粗砂含量和法向应力变化对试验结果的影响,模型最终计算结果与试验结果具有较好的一致性,可较好地适用于松散颗粒剪切强度的计算。Abstract: To understand the effect of particle size gradations on mechanical properties of loose granular materials, direct shear tests of specimens with different coarse particle fractions were conducted. The stress-strain curves and shear strength were obtained in the conditions of different normal stress. The results were fitted according to the model of the BoxLucas1 stress transfer. The changes of coarse sand fractions were introduced into the model as a parameter, and a modified model suitable for the strength of loose granular materials was developed. The model could take into account influences of coarse sand fractions and normal stress, and the final calculation results were in good agreements with the experimental results, which could be used to calculate shear strength of loose granular materials.
-
Key words:
- loose granular material /
- grading /
- direct shear test /
- model modification /
- shear strength
-
[1] ISHIHARA K. Liquefaction and Flow Failure During Earthquakes[J]. Géotechchinque,1993,43(3):351-415. [2] YANG J. Non-Uniqueness of Flow Liquefaction Line for Loose Sand[J]. Géotechchinque,2002,52(10):757-760. [3] YANG J, LI X S. Sate-Dependent Strength of Sands from the Perspective of Unified Modeling[J]. Journal of Geotechnical and Geonvironmental Engineering,2004,130(2):186-198. [4] 沈珠江.土体结构性的数学模型:21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97. [5] 王瑞,郭聚坤,寇海磊,等.钢-粉质黏土界面剪切特性及本构模型研究[J].工业建筑,2019,49(10):123-128,150. [6] SIMONL A, HOULSBY G T. The Direct Shear Strength and Dilatancy of Sand-Gravel Mixture[J]. Geotechnical and Geological Engineering,2006,24(3):523-549. [7] CLOUGH G W, DUNCAN J M. Finite Element Analysis of Retaining Wall Behavior[J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, 1971, 97(12):1657-1673. [8] 高登辉,邢义川,郭敏霞,等.非饱和重塑黄土-混凝土接触面修正双曲线模型[J].吉林大学学报,2020,50(1):156-164. [9] 张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用[J].岩土工程学报,1998,20(6):62-66. [10] 路德春,罗磊,王欣,等.土与结构接触面土体软/硬化本构模型及数值实现[J].工程力学,2017,34(7):41-49. [11] 徐舜华,郑光,徐光黎.考虑剪切硬化的砂土临界状态的本构模型[J].岩土工程学报,2009,31(6):953-958. [12] 戴北冰,杨峻,周翠英.颗粒大小对颗粒材料力学行为影响初探[J].岩土力学,2014,35(7):1878-1884. [13] 田世雄,路军富,连鹏,等.粗粒含量对砂卵石土宏细观力学特性影响分析[J].科学技术与工程,2019,19(2):186-191. [14] 张帅,程晓辉,王天麟.非等向固结砂土极小应变刚度的超弹性模型[J].工程力学,2020,37(1):145-151. [15] 谢新宇,王忠瑾,王金昌,等.考虑桩土非线性的超长桩沉降计算方法[J].中南大学学报,2013,44(11):4664-4671. [16] 张玉,邵生俊,佘方涛,等.Q3结构性黄土的压缩和剪切结构势演化特性研究[J].工业建筑,2018,48(6):85-90,141. [17] 北方交通大学铁道建筑系隧道教学组.用于隧道工程的地质材料分类[J].隧道译丛,1972,16(4):32-44.
点击查看大图
计量
- 文章访问数: 203
- HTML全文浏览量: 6
- PDF下载量: 0
- 被引次数: 0