RESEARCH ON OPTIMIZATION OF PROPORTIONS FOR HIGHLY DURABLE CONCRETE MIX BASED ON RF-NSGA-Ⅱ ALGORITHM
-
摘要: 高寒复杂环境中混凝土会遭遇耐久性不足的问题,进行配合比设计以保证混凝土良好的工作性能和耐久性能具有重要意义。采用RF-NSGA-Ⅱ算法,以抗冻性和抗渗性两个重要的混凝土耐久性指标为研究目标,建立配合比优化设计的多目标模型,实现高精度的混凝土相对弹性模量和氯离子渗透系数预测以及配合比优化。首先基于混凝土材料及配合比样本数据分别建立随机森林(RF)混凝土抗冻性和抗渗性预测模型,然后将回归预测函数作为目标函数结合JGJ 55—2011《普通混凝土设计规程》和工程要求建立配合比因素的约束范围,最后利用NSGA-Ⅱ算法进行多目标寻优,获得最佳配合比。研究结果表明:混凝土相对弹性模量和氯离子渗透系数的RF预测模型效果很好,均方根误差φRMSE低至0.04,决定系数R2高达0.985,经优化获得了满足耐久性和力学试验要求的混凝土配合比优化目标值,与工程实际情况相符。Abstract: The problem of insufficient durability for concrete has always been a serious in the complex environment of high cold areas. It is of great significance to design the proportion of concrete mix to ensure the good working performances and durability of concrete. A RF-NSGA-II algorithm was adopted. The multi-objective model of optimization design for concrete mix was constructed, in which the two important durability indexes of concrete:frost resistance and impermeability were taken as the objectives, so as to achieve high-precision prediction of the relative elastic moduli, chloride ion permeability coefficient and optimal proportion of concrete mix. Firstly, based on the data of in real time concrete material and mix proportions, the prediction models of random forest (RF) for frost resistance and impermeability of concrete was constructed respectively. Then,the regression prediction function was taken as the objective function, and the constraint range of factors for mix proportions was determinal according to Specification for Mix Proportion Design or Ordinary Concrete(JGJ 55-2011) and engineering requirements. Finally,the NSGA-Ⅱ algorithm was used for multi-objective optimization to obtain the optimal mix proportion. The results showed that the prediction model for relative elastic moduli in time and chloride ion permeability coefficients of concrete was very good, the error of φRMSE was 0.04, the coefficient of determination R2 was in time as 0.985. Through optimization, the optimization target value of the proportion concrete mix met the requirements of durability and mechanical tests, which was consistent with the actual situation of the project.
-
[1] 冯忠居, 陈思晓, 徐浩, 等. 基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估[J]. 交通运输工程学报, 2018, 18(6):18-26. [2] 蒋正武, 徐春普, 张盛. 多目标性能需求的C50混凝土配合比优化设计方法[J]. 建筑材料学报, 2019, 22(4):499-505. [3] 徐存东, 谢佳琳, 田子荀, 等. 基于粗糙集理论的混凝土抗冻耐久性影响因素评价[J]. 中国农村水利水电, 2017(7):131-136. [4] LIU R Y, CHI Y, CHEN S Y, et al. Influence of Pore Structure Characteristics on the Mechanical and Durability Behavior of Pervious Concrete Material Based on Image Analysis[J]. International Journal of Concrete Structures and Materials, 2020, 14(1). http://doi.org/10.1186/540069-020-00404-1. [5] VÁZQUEZ-RODRÍGUEZ F J, ELIZONDO-VILLAREAL N, VERÁSTEGUI-LUZ H, et al. Effect of Mineral Aggregates and Chemical Admixtures as Internal Curing Agents on the Mechanical Properties and Durability of High-Performance Concrete[J]. Materials (Basel, Switzerland), 2020, 13(9).https:/doi.org/10.3390/ma13092090. [6] 赵士豪, 林喜华, 车玉君, 等. 基于DE响应面分析的C100超高性能混凝土配合比优化设计[J]. 混凝土与水泥制品, 2018(8):24-28. [7] 张祖雪, 邹昀, 赵桃干, 等. 玻璃瓷粒轻骨料混凝土力学性能试验及配合比优化分析[J]. 硅酸盐通报, 2019, 38(7):2228-2234. [8] 焦楚杰, 崔力仕, 高仁辉, 等. 基于性价比优化的混凝土配方设计模型[J]. 建筑材料学报, 2020, 23(6):1321-1327. [9] 韩斌, 吉坤, 胡亚飞, 等. ANN-PSO-GA模型在湿喷混凝土强度预测及配合比优化中的应用[J]. 采矿与安全工程学报, 2021, 38(3):1-9. [10] 王静娜. 基于随机森林算法的二手车估价模型研究[D]. 北京:北京交通大学, 2019. [11] 杨思琪. 随机森林模型在太原市细颗粒物浓度预测中的应用[D]. 太原:太原理工大学, 2017. [12] 巩玲君, 张纪海. 基于NSGA-Ⅱ的应急生产任务多目标优化模型及算法研究[J]. 运筹与管理, 2019, 28(12):7-13. [13] GUNJAN, SHARMA A K, VERMA K. NSGA-Ⅱ with ENLU Inspired Clustering for Wireless Sensor Networks[J]. Wireless Networks, 2020, 26(5):3637-3655. [14] 魏勤, 陈仕军, 黄炜斌, 等. 利用随机森林回归的现货市场出清价格预测方法[J]. 中国电机工程学报, 2021, 41(4):1360-1367, 1542.
点击查看大图
计量
- 文章访问数: 135
- HTML全文浏览量: 13
- PDF下载量: 4
- 被引次数: 0