BEAM-TO-COLUMN JOINT OF NEW STRUCTURES INCORPORATING FRP: CURRENT STATUS AND PROSPECTS
-
摘要: 纤维增强复合材料(FRP)因其轻质、高强、耐腐蚀性等优点,已被广泛应用于既有结构的加固,而在新建结构中应用则较少。FRP是一种非金属材料,其破坏形式一般表现为线性断裂,它既不能像钢结构一样屈服耗能,也不能像钢材一样通过焊接、铆接或栓接连接,这在一定程度上限制了FRP在新结构中的应用。众所周知,梁柱节点的受力性能对保证结构体系整体受力性能非常关键,也是FRP在新结构应用中亟待解决的技术瓶颈。为此,本文系统地总结了近年来FRP新建建筑结构梁柱节点的最新研究进展,旨在为上述技术瓶颈寻找研究突破口。所述FRP新建建筑结构涉及了全FRP结构梁柱节点、FRP筋混凝土结构梁柱节点及FRP约束混凝土组合结构梁柱节点。分析了现有FRP新建建筑结构梁柱节点研究存在的不足,并对未来的研究需求进行了展望,为今后FRP新结构的研究与应用提供参考。Abstract: Fiber-reinforced polymer (FRP), a new composite material with advantages such as light weight, high strength, corrosion resistance, has been widely used in strengthening of existing structures but much less in new structures. As a non-metallic material, FRP is featured by its linear brittle nature and the lack of energy dissipation, as a result, new structure incorporating FRP cannot be easily connected to other structural members by welding or other measures (riveting, bolting) like in steel structures, which limits the application of FRP in new structures to a certain extent. It is well-known that the performance of beam-to-column joints is very critical to ensure the overall structural performance of a structural system, which is also the technical bottleneck to be solved in the application of FRP in new structures. To this end, this paper provided a state-of-the-art review of beam-to-column joints of FRP new building structures in recent years, in order to identify research needs for the technical difficulties. The FRP new building structures discussed herein included the beam-to-column joints of all-FRP structures, FRP bars reinforced concrete structures and composite structures based on FRP-confined concrete. The shortcomings of the existing research on beam-to-column joints of FRP composite structures were analyzed, and prospects were put forward, which could identify the research needs and provide possible solutions for the application of new structures incorporating FRP in the future.
-
[1] 冯鹏, 叶列平. FRP结构和FRP组合结构在结构工程中的应用与发展[C]//第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会. 昆明:2002:51-63. [2] BAKIS C E, BANK L C, BROWN V L, et al. Fiber-Reinforced Polymer Composites for Construction:State-of-the-Art Review[J]. Journal of Composites for Construction, 2002, 6(2):73-87. [3] HOLLAWAY L C. A Review of the Present and Future Uilisation of FRP Composites in the Civil Infrastructure with Reference to Their Important In-Service Properties[J]. Construction & Building Materials, 2010, 24(12):2419-2445. [4] LUO L X. Development and Application of FRP Materials in the Structural Construction of China[C]//American Society of Civil Engineers Geo-Hubei 2014 International Conference on Sustainable Civil Infrastructure. Yichang:2014:126-132. [5] 吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京:科学出版社,2017. [6] 岳清瑞. 我国碳纤维(CFRP)加固修复技术研究应用现状与展望[J]. 工业建筑, 2000, 30(10):25-28. [7] 宋文, 冯鹏, 黄福胜. 纤维增强复合材料增强和修复加固大尺寸钢筋混凝土柱抗震性能研究[J]. 工业建筑, 2019, 49(9):130-138. [8] 张峰, 吴宇飞, 高华睿, 等. 组合粘贴纤维增强复材抗弯加固35 m T型梁破坏性试验研究[J]. 工业建筑, 2019,49(9):152-155,129. [9] 葛文杰, 虞佳敏, 高培琦, 等. 碳纤维布加固玄武岩纤维复材筋工程用水泥基复合材料混凝土梁的受弯性能[J]. 工业建筑, 2020, 50(2):163-168. [10] POHORYLES D A, MELO J, ROSSETTO T, et al. Seismic Retrofit Schemes with FRP for Deficient RC Beam-Column Joints:State-of-the-Art Review[J]. Journal of Composites for Construction, 2019, 23(4):03119001.DOI: 10.1061/(ASCE)CC.1943-5614.0000950. [11] ZHU Z, AHMAD I, MIRMIRAN A. Fiber Element Modeling for Seismic Performance of Bridge Columns Made of Concrete-Filled FRP Tubes[J]. Engineering Structures, 2006, 28(14):2023-2035. [12] LI B, ZOHREVAND P, MIRMIRAN A. Cyclic Behavior of FRP Concrete Bridge Pier Frames[J]. Journal of Bridge Engineering, 2013, 18(5):429-438. [13] ABDELKARIM O I, GHENI A, ANUMOLU S, et al. Seismic Behavior of Hollow-Core FRP-Concrete-Steel Bridge Columns[C]//ASCE Structures Congress, Portland:2015. [14] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9):99-104. [15] GIRÃO COELHO A M, MOTTRAM J T. A Review of the Behaviour and Analysis of Bolted Connections and Joints in Pultruded Fibre Reinforced Polymers[J]. Materials & Design, 2015, 74:86-107. [16] KELLER T, VALLÉE T. Adhesively Bonded Lap Joints from Pultruded GFRP Profiles. Part I:Stress-Strain Analysis and Failure Modes[J]. Composites Part B:Engineering, 2005, 36(4):331-340. [17] HESHMATI M, HAGHANI R, AL-EMRANI M. Environmental Durability of Adhesively Bonded FRP/Steel Joints in Civil Engineering Applications:State of the Art[J]. Composites Part B:Engineering, 2015, 81:259-275. [18] LEE Y G, CHOI E, YOON S J. Effect of Geometric Parameters on the Mechanical Behavior of PFRP Single Bolted Connection[J]. Composites Part B:Engineering, 2015, 75:1-10. [19] GIANNOPOULOS I K, DORONI-DAWES D, KOUROUSIS K I, et al. Effects of Bolt Torque Tightening on the Strength and Fatigue Life of Airframe FRP Laminate Bolted Joints[J]. Composites Part B:Engineering, 2017,125:19-26. [20] BANK L C, MOSALLAM A S, GONSIOR H E. Beam-to-Column Connections for Pultruded FRP Structures[C]//Proceedings of the 1st Materials Engineering Congress, Materials Engineering Division. Denver, Colorado:1990. [21] MOSALLAM A S, BANK L C. Short-Term Behavior of Pultruded Fiber-Reinforced Plastic Frame[J]. Journal of Structural Engineering, 1992, 118(7):1937-1954. [22] BANK L C, MOSALLAM A S, MCCOY G T. Design and Performance of Connections for Pultruded Frame Structures[J]. Journal of Reinforced Plastics and Composites, 1994, 13(3):199-212. [23] BANK L C, YIN J, MOORE L, et al. Experimental and Numerical Evaluation of Beam-to-Column Connections for Pultruded Structures[J]. Journal of Reinforced Plastics and Composites, 1996, 15(10):1052-1067. [24] MOSALLAM A S, ABDELHAMID M K, CONWAY J H. Performance of Pultruded FRP Connections Under Static and Dynamic Loads[J]. Journal of Reinforced Plastics and Composites, 1994, 13(5):386-407. [25] MOSALLAM A S. Connection and Reinforcement Design Details for Pultruded Fiber Reinforced Plastic (PFRP) Composite Structures[J]. Journal of Reinforced Plastics and Composites, 1995, 14(7):752-784. [26] BRUNEAU M, WALKER D. Cyclic Testing of Pultruded Fiber-Reinforced Plastic Beam-Column Rigid Connection[J]. Journal of Structural Engineering, 1994, 120(9):2637-2652. [27] MOTTRAM J T, ZHENG Y. State-of-the-Art Review on the Design of Beam-to-Column Connections for Pultruded Frames[J]. Composite Structures, 1996, 35(4):387-401. [28] MOTTRAM J T, ZHENG Y. Further Tests on Beam-to-Column Connections for Pultruded Frames:Web-Cleated[J]. Journal of Composites for Construction, 1999, 3(1):3-11. [29] MOTTRAM J T, ZHENG Y. Further Tests on Beam-to-Column Connections for Pultruded Frames:Flange-Cleated[J]. Journal of Composites for Construction, 1999, 3(3):108-116. [30] QURESHI J, MOTTRAM J T. Behaviour of Pultruded Beam-to-Column Joints Using Steel Web Cleats[J]. Thin-Walled Structures, 2013, 73:48-56. [31] QURESHI J, MOTTRAM J T. Response of Beam-to-Column Web Cleated Joints for FRP Pultruded Members[J]. Journal of Composites for Construction, 2014, 18(2):04013039. DOI: 10.1061/(ASCE)CC.1943-5614.0000392. [32] QURESHI J, MOTTRAM J T. Moment-Rotation Response of Nominally Pinned Beam-to-Column Joints for Frames of Pultruded Fibre Reinforced Polymer[J]. Construction and Building Materials, 2015, 77:396-403. [33] TURVEY G J, COOPER C. Semi-Rigid Pultruded GRP Frame Connections:Tests to Determine Static Moment-Rotation Characteristics[C]//7th European Conference on Composite Materials ECCM-7. Cambridge:1996:295-300. [34] TURVEY G J, COOPER C. Characterisation of the Short Term Static Moment-Rotation Response of Bolted Connections Between Pultruded GRP Beam and Column WF-Sections[C]//Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS II). Canadian Society for Civil Engineering, Montreal:1996. [35] TURVEY G J. Moment-Rotation Tests on Bolted End Connections in Pultruded GRP Beams-Tests with Stainless Steel Cleata and an Assessment of Their Performance Relative to GRP Cleats[C]//9th European Conference on Composite Materials ECCM-9(Proc. CD Rom). Brighton:2000. [36] HARTE A M, CANN D M. Finite Element Modelling of the Semi-Rigid Behaviour of Pultruded FRP Connections[J]. Journal of Materials Processing Technology, 2001, 119(1):98-103. [37] SMITH S J, PARSONS I D, HJELMSTAD K D. An Experimental Study of the Behavior of Connections for Pultruded GFRP I-Beams and Rectangular Tubes[J]. Composite Structures, 1998, 42(3):281-290. [38] SMITH S J, PARSONS I D, HJELMSTAD K D. Experimental Comparisons of Connections for GFRP Pultruded Frames[J]. Journal of Composites for Construction, 1999, 3(1):20-26. [39] SMITH S J, PARSONS I D, HJELMSTAD K D. Finite-Element and Simplified Models of GFRP Connections[J]. Journal of Structural Engineering, 1999, 125(7):749-756. [40] SINGAMSETHI S K, LAFAVE J M, HJELMSTAD K D. Fabrication and Testing of Cuff Connections for GFRP Box Sections[J]. Journal of Composites for Construction, 2005, 9(6):536-544. [41] CARRION J E, LAFAVE J M, HJELMSTAD K D. Experimental Behavior of Monolithic Composite Cuff Connections for Fiber Reinforced Plastic Box Sections[J]. Composite Structures, 2005, 67(3):333-345. [42] CARRION J E, HJELMSTAD K D, LAFAVE J M. Finite Element Study of Composite Cuff Connections for Pultruded Box Sections[J]. Composite Structures, 2005, 70(2):153-169. [43] WU C, ZHANG Z, BAI Y. Connections of Tubular GFRP Wall Studs to Steel Beams for Building Construction[J]. Composites Part B:Engineering, 2016, 95:64-75. [44] ZHANG Z, WU C, NIE X, et al. Bonded Sleeve Connections for Joining Tubular GFRP Beam to Steel Member:Numerical Investigation with Experimental Validation[J]. Composite Structures, 2016, 157:51-61. [45] ZHANG Z, BAI Y, HE X, et al. Cyclic Performance of Bonded Sleeve Beam-Column Connections for FRP Tubular Sections[J]. Composites Part B:Engineering, 2018, 142:171-182. [46] JING Z Z, YU B, XIAO X. Bonded Sleeve Connections for Joining Tubular Glass Fiber-Reinforced Polymer Beams and Columns:Experimental and Numerical Studies[J]. Journal of Composites for Construction, 2018, 22(4):04018019. DOI: 10.1061/(ASCE)CC.1943-5614.0000853. [47] 邓宗才, 高磊. FRP筋混凝土柱及框架抗震性能的研究进展[J]. 玻璃钢/复合材料, 2016(4):88-92,63. [48] 薛伟辰. 纤维塑料筋混凝土研究新进展[J]. 中国科学基金, 2004, 18(1):10-12. [49] 谭园, 薛伟辰. 部分黏结预应力CFRP筋混凝土梁受弯承载力计算公式[J]. 土木工程学报, 2011(增刊1):31-37. [50] 史健喆, 汪昕, 吴智深. 采用同源材料夹片锚具的玄武岩纤维复材筋体外预应力加固混凝土梁受弯性能研究[J]. 工业建筑, 2019, 49(9):156-160. [51] SAID A M, NEHDI M L. Use of FRP for RC Frames in Seismic Zones:Part II. Performance of Steel-Free GFRP-Reinforced Beam-Column Joints[J]. Applied Composite Materials, 2004, 11(4):227-245. [52] SHARBATDAR M K, SAATCIOGLU M, BENMOKRANE B. Seismic Flexural Behavior of Concrete Connections Reinforced with CFRP Bars and Grids[J]. Composite Structures, 2011, 93(10):2439-2449. [53] SHARBATDAR M K, DALVAND A, HAMZE-NEJADI A. Experimental and Numerical Assessment of FRP Stirrups Distance on Cyclic Behavior of RC Joints[J]. Iranian Journal of Science and Technology-Transactions of Civil Engineering, 2013, 37(C):367-381. [54] FAKHARIFAR M, DALVAND A, SHARBATDAR M K, et al. Innovative Hybrid Reinforcement Constituting Conventional Longitudinal Steel and FRP Stirrups for Improved Seismic Strength and Ductility of RC Structures[J]. Frontiers of Structural and Civil Engineering, 2016, 10(1):44-62. [55] CSA Standard. Design of Concrete Structures:A23.3.04[S]. Ontario:Canadian Standards Association, 2005. [56] HASABALLA M H. Seismic Behaviour of Exterior GFRP-Reinforced Concrete Beam-Column Joints[D]. Winnipeg:University of Manitoba, 2010. [57] HASABALLA M H, EL-RAGABY A, EL-SALAKAWY E F. Seismic Performance of Exterior Beam-Column Joints Reinforced with Glass Fibre Reinforced Polymer Bars and Stirrups[J]. Canadian Journal of Civil Engineering, 2011, 38(10):1092-1102. [58] MADY M, ELRAGABY A, EL-SALAKAWY E. Seismic Behavior of Beam-Column Joints Reinforced with GFRP Bars and Stirrups[J]. Journal of Composites for Construction, 2011, 15(6):875-886. [59] HASABALLA M. GFRP-Reinforced Concrete Exterior Beam-Column Joints Subjected to Seismic Loading[D]. Winnipeg:University of Manitoba, 2014. [60] GHOMI S K, EL-SALAKAWY E. Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams[J]. Journal of Composites for Construction, 2015:04015019. DOI: 10.1061/(ASCE)CC.1943-5614.0000582. [61] HASABALLA M, EL-SALAKAWY E. Shear Capacity of Exterior Beam-Column Joints Reinforced with GFRP Bars and Stirrups[J]. Journal of Composites for Construction, 2015:04015047.DOI: 10.1061/(ASCE)CC.1943-5614.0000609. [62] HASABALLA M, EL-SALAKAWY E. Anchorage Performance of GFRP Headed and Bent Bars in Beam-Column Joints Subjected to Seismic Loading[J]. Journal of Composites for Construction, 2018, 22(6):2018,22(6):04018060. DOI: 10.1061/(ASCE)CC.1943-5614.0000888. [63] GHOMI S K, EHAB E S. Seismic Behavior of Exterior GFRP-RC Beam-Column Connections:Analytical Study[J]. Journal of Composites for Construction, 2018, 22(4):04018022.DOI: 10.1061/(ASCE)CC.1943-5614.0000858. [64] GHOMI S K, EL-SALAKAWY E. Effect of Joint Shear Stress on Seismic Behaviour of Interior GFRP-RC Beam-Column Joints[J]. Engineering Structures, 2019, 191:583-597. [65] GHOMI S K, EL-SALAKAWY E. Seismic Behavior of GFRP-Reinforced Concrete Interior Beam-Column-Slab Subassemblies[J]. Journal of Composites for Construction, 2019, 23(6):04019047.DOI: 10.1061/(ASCE)CC.1943-5614.0000980. [66] 陶忠, 于清. FRP约束混凝土柱发展现状简述[J]. 工业建筑, 2005(9):3-6,39. [67] MIRMIRAN A, SHAHAWY M. A Novel FRP-Concrete Composite Construction for the Infrastructure[C]//American Society of Civil Engineering, Boston:1995:1663-1666. [68] COLE B, FAM A. Flexural Load Testing of Concrete-Filled FRP Tubes with Longitudinal Steel and FRP Rebar[J]. Journal of Composites for Construction, 2006, 10(2):161-171. [69] KARIMI K, TAIT M J, EL-DAKHAKHNI W W. Testing and Modeling of a Novel FRP-Encased Steel-Concrete Composite Column[J]. Composite Structures, 2011, 93(5):1463-1473. [70] YU T, LIN G, ZHANG S S. Compressive Behavior of FRP-Confined Concrete-Encased Steel Columns[J]. Composite Structures, 2016, 154:493-506. [71] REN F M, LIANG Y W, HO J C M, et al. Behaviour of FRP Tube-Concrete-Encased Steel Composite Columns[J]. Composite Structures, 2020, 241:1-18. [72] XIONG M X, XU Z, CHEN G M, et al. FRP-Confined Steel-Reinforced Recycled Aggregate Concrete Columns:Concept and Behaviour Under Axial Compression[J]. Composite Structures, 2020, 246:112408.DOI: 10.1016/j.compstruct.2020.112408.DOI:10.1016/j.engstruct.2020.110990. [73] CHEN G M, LAN Z H, XIONG M X, et al. Compressive Behavior of FRP-Confined Steel-Reinforced High Strength Concrete Columns[J]. Engineering Structures, 2020, 220:110990. [74] TENG J G, YU T, WONG Y L. Structural Behavior of Hybrid FRP-Concrete-Steel Double-Skin Tubular Columns[C]//Stub Column Tests Proceedings of the Second International Conference on Steel & Composite Structures. Seoul:2004. [75] TENG J G, YU T, WONG Y L, et al. Hybrid FRP-Concrete-Steel Tubular Columns:Concept and Behavior[J]. Construction & Building Materials, 2007, 21(4):846-854. [76] 张冰, 魏威, 冯贵森,等. 矩形纤维增强复材-混凝土-钢组合空心柱的轴压试验研究[J]. 工业建筑, 2019, 49(12):195-200,210. [77] 赵鹏展. GFRP管混凝土柱-钢筋混凝土梁节点抗震性能研究[D].大连:大连理工大学,2010. [78] YU F, LI D, NIU D, et al. A Model for Ultimate Bearing Capacity of PVC-CFRP Confined Concrete Column with Reinforced Concrete Beam Joint Under Axial Compression[J]. Construction and Building Materials, 2019, 214:668-676. [79] YU F, LI D, NIU D, et al. Strain Analysis of PVC-CFRP Confined Concrete Column with Ring Beam Joint Under Axial Compression[J]. Composite Structures, 2019, 224:111012.DOI: 10.1016/j.compstruct.2019.111012. [80] 刘奇奇. PVC-FRP管混凝土柱-钢筋混凝土梁节点连接方式研究[D]. 马鞍山:安徽工业大学,2018. [81] 赵启林, 高一峰, 李飞. 复合材料预紧力齿连接技术研究现状与进展[J]. 玻璃钢/复合材料, 2014(12):52-56. [82] 任凤鸣, 田时雨. 一种装配式梁柱节点结构:201921970714X[P]. 2020-01-21. [83] 任凤鸣, 田时雨. 一种三维装配式梁柱节点结构:201921971024.6[P]. 2020-01-21. [84] European Conmittee for Standardization. 3. Design of Steel Structures:Part 1.8:Design of Joints:EN 1993-1-8[S]. Brussels:European Committee for Standardization, 2005. [85] 周明华. 土木工程结构试验与检测[M]. 南京:东南大学出版社, 2013. [86] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ/T 101-2015[S]. 北京:中国建筑工业出版社, 2015. [87] ACI 374.1-05. Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary:ACI 374.1-05[S]. Farmington Hills:American Concrete Institute, 2005.
点击查看大图
计量
- 文章访问数: 192
- HTML全文浏览量: 13
- PDF下载量: 5
- 被引次数: 0