Research on the Fatigue Performance of Novel Rib-to-Diaphragm Joints
-
摘要: 为提升纵肋与横隔板构造细节的疲劳性能,将横隔板在一定区域范围内与纵肋底板进行焊接连接,加强两者的协同受力,进而改善其疲劳性能,在此基础上发展了两种纵肋与横隔板新型构造细节并对其疲劳性能进行系统研究。结果表明:在纵向移动荷载作用下,纵肋与横隔板普通开孔构造细节的主导疲劳开裂模式为纵肋腹板围焊焊趾开裂并沿纵肋腹板扩展且以承受拉-拉循环应力为主;两种纵肋与横隔板新型构造细节的主导疲劳开裂模式均以承受压-压循环应力为主,其中以新型构造细节1的受力最为合理,其主导疲劳开裂模式为纵肋底板围焊端部焊趾开裂并沿纵肋底板扩展,相较于纵肋与横隔板普通开孔构造细节,其应力幅值降低约12.4%,疲劳性能得到有效提升。
-
关键词:
- 正交异性钢桥面板 /
- 纵肋与横隔板新型构造细节 /
- 有限元 /
- 疲劳性能 /
- 主导疲劳开裂模式
Abstract: In order to improve the fatigue performance of rib-to-diaphragm joint, two types of novel rib-to-diaphragm joints in OSD were proposed. For the novel welded joints, the floor of rib and diaphragm are connected by welding to enhance the cooperative working performance. The rib-to-diaphragm joints were taken as the research object, and its fatigue performance were studied systematically. The results indicate that the predominant crack pattern of the conventional rib-to-diaphragm joint is cracking initiated from the rib toe that propagated through the web plane of rib, and the stress state of cracking pattern Ⅰ is mainly in the tensile state. The predominant crack pattern of the two novel welded joints are mainly in the compressive state, and the novel welded joint 1 is the most reasonable one among the three types of novel welded joints. The predominant crack pattern of the novel welded joint 1 is cracking initiated from the rib toe that propagated through the floor plane of rib. Compared with the conventional rib-to-diaphragm joint, the stress range of the novel welded joint 1 is reduced by 12.4%, and the fatigue performance is effectively improved. -
[1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. [2] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板横隔板挖孔型式[J]. 长安大学学报(自然科学版), 2012, 32(2): 58-64. [3] 唐亮, 黄李骥, 王秀伟, 等. 钢桥面板U肋-横隔板连接接头应力分析[J]. 公路交通科技, 2014, 31(5): 93-101. [4] 张清华, 李俊, 卜一之, 等. 正交异性钢桥面板纵肋与横隔板交叉构造细节疲劳开裂快速加固方法[J]. 中国公路学报, 2018, 31(12): 124-133. [5] 张清华, 崔闯, 卜一之, 等. 正交异性钢桥面板足尺节段疲劳模型试验研究[J]. 土木工程学报, 2015, 48(4): 72-83. [6] KOLSTEIN M H. Fatigue classification of welded joints in orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2007. [7] YOKOZEKI K, MIKI C. Fatigue evaluation for longitudinal-to-transverse rib connection of orthotropic steel deck by using structural hot spot stress[J]. Welding in the World, 2016, 60(1): 83-92. [8] SIM H B, UANG C M, SIKORSKY C. Effects of fabrication procedures on fatigue resistance of welded joints in steel orthotropic decks[J]. Journal of Bridge Engineering, 2009, 14(5): 366-373. [9] 向泽, 祝志文. 切口型式对正交异性钢桥面板应力特性的影响[J]. 铁道科学与工程学报, 2019, 16(2): 399-407. [10] 朋茜, 周绪红, 狄谨, 等.钢桥面板纵肋与横隔板连接位置疲劳损伤特征[J]. 中国公路学报, 2018, 31(11): 78-90. [11] 吕彭民, 王龙奉, 李大涛, 等. 正交异性钢桥面板U肋与横隔板构造细节围焊处疲劳性能[J]. 长安大学学报(自然科学版), 2015, 35(6): 63-70. [12] 韩冰, 蒲黔辉, 施洲. 正交异性钢桥面板足尺模型疲劳试验研究[J]. 桥梁建设, 2016, 46(4): 61-66. [13] 唐亮, 黄李骥, 刘高, 等. 正交异性钢桥面板足尺模型疲劳试验[J]. 土木工程学报, 2014, 47(3): 112-122. [14] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69-76. [15] BSI. Eurocode 1: actions on structures-part 2: traffic loads on bridges: EN 1991-2∶2003[S]. Brussels:BSI Standards Limited, 2003.
点击查看大图
计量
- 文章访问数: 51
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0