EXPERIMENTAL STUDY ON RESTORING FORCE MODEL FOR STEEL-POLYPROPYLENE-FIBER-REINFORCED CONCRETE SHEAR WALLS WITH LITHIUM SLAG
-
摘要: 为研究钢-聚丙烯混杂纤维锂渣混凝土剪力墙的抗震性能和恢复力特性,对三榀剪力墙试件进行拟静力试验,试件受力过程经过弹性阶段、弹塑性阶段、屈服阶段、破坏阶段,基于试验结果分析试件的受力形态和破坏状态,以开裂点、屈服点、峰值点、破坏点为特征点提出该新型剪力墙的四折线骨架曲线模型、刚度退化规律、恢复力模型。结果表明:相同轴压比时,混杂纤维可有效提升试件延性、极限变形能力等抗震性能;掺入混杂纤维的试件随着轴压比提高,承载力和延性有所提高、残余变形减小、刚度退化明显。根据试验结果建立的四折线骨架曲线模型与试验吻合度较高,可较好反映试件各阶段的受力状态,基于试验数据回归和理论分析建立的刚度退化方程可较好地描述试件各阶段的刚度退化规律,并结合滞回规则建立了恢复力模型。
-
关键词:
- 混杂纤维锂渣混凝土剪力墙 /
- 骨架曲线 /
- 刚度退化 /
- 滞回规则 /
- 恢复力模型
Abstract: In order to study the seismic performance and restoring force characteristics of steel-polypropylene-fiber-reinforced concrete shear wall with lithium slag, three shear walls were tested by quasi-static test. The components had gone through the elastic stage, elastic-plastic stage, yield stage, and failure stage. Based on test results, taking cracking points, yield points, peak points and breaking-down points as characteristic points, the stress form and failure results of the specimen were analyzed, and the four-fold-line skeleton curve model, stiffness degradation law and restoring force model of the new shear wall were proposed. The results showed that under the same axial compression ratio, the hybrid fiber could effectively improve the ductility and ultimate deformation capacity of the component. As the axial compression ratio increased, the specimen mixed with the hybrid fiber would increase the bearing capacity and ductility, reduce the residual deformation and stiffness. According to the test results, the four-fold-line skeleton curve model fitted well with the test results, which could better reflect the stress state of the specimen at each stage. The stiffness degradation equation established by regressive and theoretical analysis of test data could better describe the stiffness degradation law of members at each stage. The restoring force model based on the hysteresis rule was preposed. -
[1] 高丹盈,尤培波,汤寄予,等.钢管混凝土边框钢纤维混凝土剪力墙受剪承载力计算[J].建筑结构学报,2018,39(6):10-20. [2] 唐巍,张广泰,董海蛟,等.纤维混凝土耐久性能研究综述[J].材料导报,2014,28(11):123-127. [3] 刘志伟,周克荣,李杰.聚丙烯纤维高性能混凝土剪力墙动力反应分析[J].世界地震工程,2004(3):15-20. [4] 逄锦伟.冻融循环作用下锂渣混凝土抗硫酸盐侵蚀研究[J].硅酸盐通报,2019,38(1):304-309. [5] 张广泰,张晓旭,田虎学.盐冻下混杂纤维锂渣混凝土梁受弯承载力研究[J].建筑材料学报, 2020, 34(4):831-837. [6] 张新培.钢筋混凝土抗震结构非线性分析[M]. 北京:科学出版社,2003. [7] TAKEDA T,SOZEN M A,NEILSEN N N. Reinforced Concrete Response to Simulated Earthquakes[J].Journal of the Structural Division, 1970, 96(12):2557-2573. [8] 郑山锁,郑跃,董立国,等.酸雨环境下锈蚀RC剪力墙恢复力模型研究[J].工程力学,2019,36(10):75-85. [9] 李柔含,李宏男,李超.考虑动力损伤退化的钢筋混凝土柱恢复力模型[J].建筑结构学报,2018,39(8):100-109. [10] 韦翠梅,徐礼华,黄乐,等.钢-聚丙烯混杂纤维混凝土柱恢复力模型试验研究[J].土木工程学报,2014,47(增刊2):227-234. [11] 王骐,张广泰,陈彪汉,等.钢-聚丙烯混杂纤维锂渣混凝土早期抗裂性能试验研究[J].混凝土,2017(6):40-43. [12] 李一,张广泰,田虎学,等.锂渣聚丙烯纤维混凝土基本力学性能试验[J].河南科技大学学报(自然科学版),2016,37(4):60-65,7. [13] 张广泰,田虎学,李宝元,等.钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J].材料导报,2018,32(14):2396-2399,2406. [14] 隋,薛建阳,董金爽,等.附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J].工程力学,2019,36(增刊1):44-53.
点击查看大图
计量
- 文章访问数: 140
- HTML全文浏览量: 21
- PDF下载量: 3
- 被引次数: 0