RESEARCH PROGRESS OF 3D PRINTING FOR CONCRETE
-
摘要: 混凝土3D打印凭借无模施工、节省人力、节材环保等优势,吸引了越来越多的关注,并得到了快速发展。混凝土3D打印技术的关键环节包括材料的制备、打印参数的确定以及3D打印混凝土硬化性能的形成。基于目前公开发表的研究成果,对3D打印混凝土的可打印性能与材料组成、打印参数与过程控制以及3D打印混凝土硬化性能等方面进行总结和分析,为混凝土3D打印工程实践和研究提供一定的参考。Abstract: With the advantages of free-form construction, labor and material saving, and environmental protection, 3D printing of concrete attracts more and more attention and develops rapidly. The key points of 3D printing technology include the preparation of materials, the determination of printing parameters and the formation of hardening properties of 3D-printed concrete. Based on the current research results, the paper summarized and discussed the printability and material composition, printing parameters and process control, as well as the hardening performance of 3D printing concrete, which is meaningful for the practice of 3D printing concrete engineering.
-
Key words:
- concrete /
- 3D printing /
- printing parameters /
- hardening performance
-
丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015(3):1-10. 石从黎, 林宗浩, 陈敬,等. 3D打印混凝土技术的初探[J]. 重庆建筑, 2017(3):24-27. LEE J, AN J, CHU A C. Fundamentals and Applications of 3D Printing for Novel Materials[J]. Applied Materials Today, 2017:120-133. PEGNA J. Exploratory Investigation of Solid Freeform Construction[J]. Automation in Construction, 1997, 5(5):427-437. ZHANG J, WANG J, DONG S, et al. A Review of the Current Progress and Application of 3D Printed Concrete[J]. Composites Part A, 2019, 125. DOI: 10.1016/j.compositesa.2019.105533. PANDA B, RUAN S, UNLUER C, et al. Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nanoclay and Nucleation Seeds for 3D Printing[J]. Composites Part B, 2020, 186. DOI: 10.1016/j.compositesb.2020.107826. SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D Printing with Concrete:Technical, Economic and Environmental Potentials[J]. Cement & Concrete Research, 2018, 112:25-36. 王香港, 王申, 贾鲁涛, 等. 3D打印混凝土技术在新冠肺炎防疫方舱中的应用[J]. 混凝土与水泥制品, 2020(4):1-4,13. LONG W, TAO J, LIN C, et al. Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D-Printing[J]. Journal of Cleaner Production, 2019, 239. DOI: 10.1016/j.jclepro.2019.118054. NERELLA V, NÄTHER M, IQBAL A, et al. Inline Quantification of Extrudability of Cementitious Materials for Digital Construction[J]. Cement & Concrete Composites, 2019, 95:260-270. NERELLA V, BEIGH M, FATAEI S, et al. Strain-Based Approach for Measuring Structural Build-Up of Cement Pastes in the Context of Digital Construction[J]. Cement & Concrete Research, 2019, 115:530-544. ROUSSEL N. Rheological Requirements for Printable Concretes[J]. Cement & Concrete Research, 2018, 112:76-85. KETEL S, FALZONE G, WANG B, et al. A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D-Printed Components[J]. Cement & Concrete Composites, 2018,101:32-43. DELPHINE M, SHIHO K, HELA B, et al. Hydration and Rheology Control of Concrete for Digital Fabrication:Potential Admixtures and Cement Chemistry[J]. Cement & Concrete Research, 2018, 112:96-110. MEWIS J, WAGNER N. Thixotropy[J]. Advances in Colloid & Interface Science, 2009, 147-148:214-227. ZHANG C, HOU Z, CHEN C, et al. Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement Paste and Optimum Aggregate Content[J]. Cement & Concrete Composites, 2019, 104. DOI: 10.1016/j.cemconcomp.2019.103406. HEIKAL M, IBRAHIM N. Hydration, Microstructure and Phase Composition of Composite Cements Containing Nano-Clay[J]. Construction & Building Materials, 2016, 112:19-27. PERROT A, RANGEARD D, PIERRE A. Structural Built-up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques[J]. Materials & Structures, 2016, 49(4):1213-1220. CHEN Y, FIGUEIREDO S, YALÇINKAYA Ç, et al. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing[J]. Materials, 2019, 12(9).DOI: 10.33901ma12091374. PANDA B, UNLUER C, TAN M J. Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing[J]. Cement & Concrete Composites, 2018, 94:307-314. PANDA B, TAN M J. Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing[J]. Ceramics International, 2018, 44:10258-10265. SUN C, XIANG J, XU M, et al. 3D Extrusion Free Forming of Geopolymer Composites:Materials Modification and Processing Optimization[J]. Journal of Cleaner Production, 2020, 258.DOI: 10.1016/j.jclepro.2020.120986. MA G, LI Z, WANG L. Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing[J]. Construction & Building Materials, 2018, 162:613-627. WENG Y, LI M, TAN M J, et al. Design 3D Printing Cementitious Materials via Fuller Thompson Theory and Marson-Percy Model[J]. Construction & Building Materials, 2018, 163:600-610. HAMBACH M, VOLKMER D. Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste[J]. Cement & Concrete Composites, 2017, 79:62-70. MA G, LI Z, WANG L, et al. Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-Based 3D Printing[J]. Construction & Building Materials, 2019, 202:770-783. WENG Y, LU B, LI M, et al. Empirical Models to Predict Rheological Properties of Fiber Reinforced Cementitious Composites for 3D Printing[J]. Construction & Building Materials, 2018, 189:676-685. LI V C, BOS F P, YU K, et al. On the Emergence of 3D Printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC)[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106038. SOLTAN D G, LI V C. A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing[J]. Cement & Concrete Composites, 2018, 90:1-13. OGURA H, NERELLA V N, MECHTCHERINE V. Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing[J]. Materials, 2018,11(8).DOI: 10.3390/ma11081375. GOSSELIN C, DUBALLET R, ROUX P, et al. Large-Scale 3D Printing of Ultra-High Performance Concrete:A New Processing Route for Architects and Builders[J]. Materials & Design, 2016, 100:102-109. TAY Y, LI M, TAN M. Effect of Printing Parameters in 3D Concrete Printing:Printing Region and Support Structures[J]. Journal of Materials Processing Technology, 2019, 271:261-270. BUSWELL R, LEAL D, JONES S, et al. 3D Printing Using Concrete Extrusion:A Roadmap for Research[J]. Cement & Concrete Research, 2018,112:37-49. XU J, DING L, CAI L, et al. Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle[J]. Automation in Construction, 2019, 104:95-106. TAY D,QIAN Y,TAN J. Printability Region for 3D Concrete Printing Using Slump and Slump Flow Test[J]. Composites Part B, 2019, 174. DOI: 10.1016/j.compositesb.2019.106968. MECHTCHERINE V, BOS F, PERROT A, et al. Extrusion-Based Additive Manufacturing with Cement-Based Materials-Production Steps, Processes, and Their Underlying Physics:A Review[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106037. LIU Z, LI M, WENG Y, et al. Modelling and Parameter Optimization for Filament Deformation in 3D Cementitious Material Printing Using Support Vector Machine[J]. Composites Part B, 2020,193.DOI: 10.1016/j.compositesb.2020.108018. WANGLER T, ROUSSEL N, BOS F, et al. Digital Concrete:A Review[J]. Cement & Concrete Research, 2019, 123.DOI: 10.1016/j.cemconres.2019.105780. WOLFS R, BOS F, SALET T. Early Age Mechanical Behaviour of 3D Printed Concrete:Numerical Modelling and Experimental Testing[J]. Cement & Concrete Research, 2018, 106:103-116. LEX R, TIMOTHY W, NICOLAS R, et al. The Role of Early Age Structural Build-up in Digital Fabrication with Concrete[J]. Cement & Concrete Research, 2018,112:86-95. JAYATHILAKAGE R, RAJEEV P, SANJAYAN J. Yield Stress Criteria to Assess the Buildability of 3D Concrete Printing[J]. Construction & Building Materials, 2020, 240.DOI: 10.1016/j.conbuildmat.2019.117989. KRUGER J, ZERANKA S, ZIJL G. 3D Concrete Printing:A Lower Bound Analytical Model for Buildability Performance Quantification[J]. Automation in Construction, 2019, 106.DOI: 10.1016/j.autcon.2019.102904. KRUGER J, CHO S, ZERANKA S, et al. 3D Concrete Printer Parameter Optimisation for High Rate Digital Construction Avoiding Plastic Collapse[J]. Composites Part B, 2020, 183.DOI: 10.1016/j.compositesb.2019.107660. KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious Materials for Construction-Scale 3D Printing:Laboratory Testing of Fresh Printing Mixture[J]. Construction & Building Materials, 2017, 145:639-647. LE T, AUSTIN S, LIM S, et al. Hardened Properties of High-Performance Printing Concrete[J]. Cement & Concrete Research, 2012, 42(3):558-566. RAHUL A, SANTHANAM M, MEENA H, et al. Mechanical Characterization of 3D Printable Concrete[J]. Construction & Building Materials, 2019,227.DOI: 10.1016/j.conbuildmat.2019.116710. PANDA B, CHANDRA P, JEN T. Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material[J]. Materials Letters, 2017, 209:146-149. MECHTCHERINE, V, NERELLA V, FRANK W, et al. Large-Scale Digital Concrete Construction-CONPrint3D Concept for On-Site, Monolithic 3D-Printing[J]. Automation in Construction, 2019, 107.DOI: 10.1016/j.autcon.2019.102933. SANJAYAN J, NEMATOLLAHI B, XIA M, et al. Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete[J]. Construction & Building Materials, 2018, 172:468-475. KEITAA E, BESSAIES-BEYB H, ZUO W, et al. Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:Measurement and Physical Origin[J]. Cement & Concrete Research, 2019, 123.DOI: 10.1016/j.cemconres.2019.105787. WOLFS R, BOS F, SALET T. Hardened Properties of 3D Printed Concrete:The Influence of Process Parameters on Interlayer Adhesion[J]. Cement & Concrete Research, 2019, 119:132-140. PUTTEN J G, SCHUTTER D, TITTELBOOM K. The Effect of Print Parameters on the (Micro)Structure of 3D Printed Cementitious Materials[C]//First RILEM International Conference on Concrete and Digital Fabrication.Zurich:2018. NERELLA V, HEMPEL S, MECHTCHERINE V. Micro-and Macroscopic Investigations on the Interface Between Layers of 3D-Printed Cementitious Elements[C]//Proceedings of the International Conference on Advances in Construction Materials and Systems. Chennai:2017. CHEN Y, FIGUEIREDO S, LI Z, et al. Improving Printability of Limestone-Calcined Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106040. NERELLA V, HEMPEL S, MECHTCHERINE V. Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing[J]. Construction & Building Materials, 2019, 205:586-601. MA G, SALMAN N, WANG L, et al. A Novel Additive Mortar Leveraging Internal Curing for Enhancing Interlayer Bonding of Cementitious Composite for 3D Printing[J]. Construction & Building Materials, 2020, 244.DOI: 10.1016/j.conbuildmat.2020.118305. WANG L, TIAN Z, MA G, et al. Interlayer Bonding Improvement of 3D Printed Concrete with Polymer Modified Mortar:Experiments and Molecular Dynamics Studies[J]. Cement & Concrete Composites, 2020, 110.DOI: 10.1016/j.cemconcomp.2020.103571. MARCHMENT T, SANJAYAN J, XIA M. Method of Enhancing Interlayer Bond Strength in Construction Scale 3D Printing with Mortar by Effective Bond Area Amplification[J]. Materials & Design, 2019, 169.DOI: 10.1016/j.matdes.2019.107684. HOSSEINI E, ZAKERTABRIZI M, KORAYEM A, et al. A Novel Method to Enhance the Interlayer Bonding of 3D Printing Concrete:An Experimental and Computational Investigation[J]. Cement & Concrete Composites, 2019, 99:112-119. ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction & Building Materials, 2018, 165:218-231. VANTYGHEM G, CORTE W, SHAKOUR E, et al. 3D Printing of a Post-Tensioned Concrete Girder Designed by Topology Optimization[J]. Automation in Construction, 2020, 112.DOI: 10.1016/j.autcon.2020.103084. LE T, AUSTIN S, LIM S, et al. Mix Design and Fresh Properties for High-Performance Printing Concrete[J]. Materials & Structures, 2012, 45(8):1221-1232.
点击查看大图
计量
- 文章访问数: 260
- HTML全文浏览量: 18
- PDF下载量: 17
- 被引次数: 0