STUDY ON ULTIMATE BEARING CAPACITY OF T-SHAPED JOINTS CONNECTED WITH CLAMPS IN STEEL GREENHOUSES
-
摘要: 为研究钢结构温室大棚中常用的夹箍T形节点的力学性能,在分析夹箍T形节点的受力机理的基础上,设计制作了专用夹具,对2种规格的6个夹箍T形节点试件进行抗拉、压性能试验,获得了其破坏模式、荷载-位移曲线和极限承载力;同时采用ABAQUS软件,考虑界面接触与滑移,建立了夹箍T形节点有限元模型,分别模拟其抗拉、压受力过程,并与试验结果进行对比分析。结果表明:在受压的情况下,2种规格节点的破坏模式相同,均为横向钢管弯曲变形引起承载力的下降;在受拉的情况下,两种规格节点的破坏模式不同,ϕ32规格的节点承载力下降为横向钢管弯曲变形所致,而ϕ25规格节点承载力下降则是连接件撕裂所致,为保证强节点弱构件的要求,建议对ϕ25规格连接件进行强化,保证其厚度大于1.48 mm。Abstract: The mechanical properties of T-shaped joints commonly used in steel greenhouses were studied. Firstly, the bearing mechanism of T-shaped joints connected with clamp was analyzed and the fixing device was designed and fabricated. Then, tensile and compressive tests for 6 T-joint specimens of 2 specifications were conducted, and the failure modes, load-displacement curves and ultimate bearing capacity were obtained. At the same time, the software ABAQUS was applied and the interfacial contact and slip phenomena were considered, finite element models of T-shaped joints connected with clamps were established, and the whole process of tension or compression was simulated and compared with the experimental results respectively. The results showed that under compression, the failure mode of the two types of joints were the same, and the bearing capacity of the joints was reduced due to flexural deformation of the transverse steel tube. And the 2 kinds of joints were destroyed in different modes. The bearing capacity of joints with ϕ32 steel tubes reduced with the increase of flexural deformation of the horizontal tube, while the joints with ϕ25 steel tubes reduced due to the tearing of clamps. The reinforcement of clamps could effectively improve the bearing capacity of joints with ϕ25 steel tubes under tension. A measure to increase clamp thickness for joints with ϕ25 steel tubes to 1.48 mm was suggested.
-
Key words:
- steel greenhouse /
- T-shaped joint /
- mechanical test /
- numerical simulation
-
魏晓明,周长吉,曹楠.中国日光温室结构及性能的演变[J].江苏农业学报,2012,28(4):855-860. 周长吉.我国温室标准化研究进程[J].中国蔬菜,2012(18):15-20. 中华人民共和国国家质量监督检验检疫总局. 温室结构荷载规范:GB/T 18622-2002[S].北京:中华人民共和国国家质量监督检验检疫总局,2002. 明月.日光温室结构优化设计研究[D].沈阳:沈阳农业大学,2007. 刘超.张拉型温室大棚基本设计理论及节点构造研究[D].昆明:昆明理工大学,2007. 丁敏,李密密,施旭栋,等.考虑覆盖材料蒙皮效应的温室结构稳定承载力计算[J].农业工程学报,2016,32(增刊1):224-232. 李成志,梁宗敏,剧锦三. 异形温室结构的空间有限元分析[J]. 中国农业大学学报,2007,12(2):84-87. 沈正炳,黄文彬. 多联栋温室框架结构的弹塑性计算[J]. 农业工程学报,2000,16(2):105-108. 何衍萍,闫俊月,周磊. 塑料大棚恒载与风荷载组合的荷载分项系数计算分析[J].农业工程学报,2016,32(4):179-184. 闫俊月,周磊,周长吉,等.塑料大棚设计中基本风压取值方法[J].农业工程学报,2014,30(12):171-176. 邓雯,罗金耀,李小平.自然通风条件下塑料大棚温度和湿度模拟[J].灌溉排水学报,2013,32(2):10-14. 李明,周长吉,闫俊月,等.日本塑料大棚抗风技术研究进展[J].中国农机化学报,2016,37(8):46-53. 俞永华,卢如国.塑料大棚结构承载特性的分析研究[J].农机化研究,2011(1):165-168. 郑金土,王绍金.塑料大棚骨架静载强度试验初探[J].浙江农业大学学报,1993,19(2):155-158. 王绍金,崔绍荣,赵建阳.实用型装配式钢管塑料大棚的研究[J].浙江农业大学学报,1992,18(2):93-96. 刘礼华, 欧珠光. 结构力学实验[M]. 武汉:武汉大学出版社, 2010. 黄呈伟,袁伟斌,郑君华.索结构节点冷压锚固试验与分析[J].建筑结构,2004,34(2):50-52. 邹宇,石永久,王元清.点式支承玻璃建筑中金属连接件承载性能的试验研究[J].建筑结构,2001,31(12):58-60. 石永久,程明,邹宇.点式支承玻璃建筑中金属连接件的简化设计方法[J].工业建筑,2005,35(2):16-20. 邹宇,石永久,王元清,等.北京植物园玻璃温室典型固接金属紧固件的承载性能研究[C]//中国钢协结构稳定与疲劳协会2000年学术交流会论文集.长沙:2000. JU J S, DING M. Flexural Behavior of Casing Joint of Square Steel Tube[J]. Open Construction and Building Technology Journal, 2011(5):8-13. DING M, HOU Z G, JIANG X G, et al. Numerical Simulation Studies on Tension Behavior of Casing and Dowel Joint of Square Steel Tube[J]. Advanced Materials Research, 2011,156/157:1555-1558. CASTELLANO S, MUGNOZZA G S, VOX G. Collapse Test on a Pitched Roof Greenhouse Structure[J]. Colture Protette, 2006, 35(1):55-61. 中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分室温拉伸试验方法:GB/T 228.-2010[S].北京:中国标准出版社,2011.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 8
- PDF下载量: 0
- 被引次数: 0