PREDICTION OF EARLY CRACK RESISTANCE OF CONCRETE BY SUPPORT VECTOR MACHINE BASED ON RANDOM FOREST
-
摘要: 混凝土收缩开裂问题严重危害建筑工程的结构安全和正常使用,准确快速预测混凝土早期抗裂性成为研究重点。将随机森林结合支持向量机算法(RF-SVM)引入混凝土早期抗裂性研究,以某项目混凝土为例,基于材料和配合比选取了12个影响因素的混凝土早期抗裂性指标体系,采用基于重要性排序的随机森林回归算法,对影响因子进行特征提取,选出最优特征变量集,达到降维的目的,同时明确了该实际工程中应当注意加强控制的因素。然后采用十折交叉验证方法对支持向量机(SVM)模型进行参数优化,利用SVM模型对筛选后的样本进行训练和预测,输出预测结果,并与未进行特征筛选的支持向量机预测模型、人工神经网络预测模型对比,结果显示:RF-SVM预测结果最接近实测值,模型精度最高。RF-SVM预测模型可为实现混凝土早期抗裂性快速预测提供一种有效的方法。Abstract: The problem of concrete shrinkage and cracking seriously endangers the structural safety and normal use of building engineering, and the accurate and rapid prediction of early crack resistance of concrete has become the research focus. In this paper, random forest combined with support vector machine algorithm (RF-SVM) was introduced into the study of early-age cracking resistance of concrete. Taking a project as an example, an index system of early-age cracking resistance of concrete was established by selecting 12 influencing factors based on material and mix ratio, in this paper, the random forest regression algorithm based on importance ranking was used to extract the features of the impact factors, select the optimal feature variable set, and achieve the goal of dimension reduction,at the same time, the factors that should be paid more attention to in the actual project were clarified. Then the parameters of the SVM model were optimized by the method of 10-fold cross-validation, and the selected samples were trained and predicted by the SVM model, and the predicted results were output, and compared it with the SVM model and the artificial neural network model without feature selection, the results showed that the prediction result of RF-SVM was the closest to the measured value and the model had the highest precision. The RF-SVM prediction model proposed in this paper could provide an effective method for rapid prediction of early crack resistance of concrete.
-
Key words:
- concrete /
- early crack resistance /
- random forest /
- support vector machine /
- prediction /
- importance evaluation
-
张轶伦. 聚丙烯纤维混凝土早期收缩与抗裂性能试验研究[D].杭州:浙江大学,2006. 张武满,孙伟.粗骨料对高性能混凝土早期自收缩的影响[J].硅酸盐学报,2009,37(4):631-636. 肖建庄,胡博,丁陶.再生混凝土早期抗开裂性能试验研究[J].同济大学学报,2015,43(11):1649-1655. 李燕波,侍克斌,陈志峰,等. 高温下高性能混凝土早期抗裂性能试验研究[J].人民黄河,2017,39(6):130-132,137. 周茗如,樊乐涛,于景龙,等. 基于平板法纤维混凝土早期抗裂性能试验研究[J].硅酸盐通报,2016,35(8):2590-2595. 杨进,王发洲,黄劲,等. 不同类型减缩剂减缩效果比较分析[J].建筑材料学报,2016,19(1):53-58. 郭寅川,陈志晖,申爱琴,等. 基于抗裂性能的高寒地区桥面板混凝土配合比优化设计[J].长安大学学报(自然科学版),2019,39(4):1-8. 姜新佩,石欠欠,任益楼,等. 粉煤灰对商品混凝土早期抗裂性能的试验研究[J].水电能源科学,2011,29(2):87-89. 王雪芳,郑建岚. 坍落度与减水剂对混凝土早期开裂性能的影响[J].厦门大学学报(自然科学版),2008(5):681-685. 李跃,黄俊,彭少民. 混凝土组分对早期抗裂性能影响研究[J].武汉理工大学学报,2007(增刊2):66-68. 张伟,宗兰,张士萍. 纤维混杂技术对高性能混凝土的早期抗裂性的影响[J].混凝土,2016(8):16-18,22. 陈妙金,汪小钦,吴思颖. 基于随机森林算法的水土流失影响因子重要性分析[J].自然灾害学报,2019,28(4):209-219. 彭杰帅,宋文杰,邓仁贵. 基于随机森林算法的地表下沉系数预测研究[J]. 湖南有色金属,2018,34(4):1-3. 罗浩,郭盛勇,包为民. 拱坝变形监测预报的随机森林模型及应用[J]. 南水北调与水利科技,2016(6):116-121,158. 程功. 基于支持向量机的变形预测方法研究[D]. 昆明:昆明理工大学,2010. 高永刚,岳建平,石杏喜.支持向量机在变形监测数据处理中的应用[J]. 水电自动化与大坝监测,2005(5):36-39. 贺立敏,王岘昕,韩冰. 基于随机森林和支持向量机的船舶柴油机故障诊断[J]. 中国航海,2017(2):29-33. 习文星,汤心溢. 基于随机森林和支持向量机的快速行人检测算法[J]. 计算机应用,2014(增刊2):283-285. 唐蓉. 基于随机森林回归的青年人体质影响因素研究[D].南昌:华东交通大学,2016.
点击查看大图
计量
- 文章访问数: 73
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0