Experimental Research on Seismic Performance Test of Prefabricated Steel-Concrete Composite Tube Shear Walls
-
摘要: 为研究装配式钢-混凝土组合管(SRCT)剪力墙的抗震性能,完成了4个足尺SRCT剪力墙试件的低周反复荷载试验,分析了试件的破坏形态、承载能力、滞回曲线、位移延性、刚度退化和耗能能力等。结果表明:SRCT剪力墙具有良好的承载能力、刚度和延性,表现出良好的抗震性能;随钢板厚度的增大,试件的破坏形态由钢板撕裂屈曲为主转为焊缝破坏为主,预制构件生产制作时需保证薄钢板与型钢连接的焊接质量,避免焊接破坏发生;0.2轴压比作用下,试件的屈服位移角的平均值为0.005 rad,极限位移角为0.013 rad,均高于现行规范限值;拉结筋间距200~250 mm范围内,适当减小拉结筋间距可提高剪力墙的延性及耗能能力。
-
关键词:
- 钢-混凝土组合管剪力墙 /
- 拟静力试验 /
- 抗震性能 /
- 破坏形态 /
- 承载能力
Abstract: A quasi-static loading test was conducted on four full-scaled models of prefabricated steel-concrete composite tube (SRCT) shear walls to evaluate the seismic performance. The test results were analyzed in terms of failure mode, bearing capacity, hysteretic curves, ductility, stiffness degradation and energy dissipation capacity. The results showed that the SRCT shear wall had high bearing capacity, stiffness, ductility and energy dissipation capacity. As the thickness of the steel plate increased, the failure mode of SRCT shear wall changed from steel plate yielding to weld failure. Measures should be taken to ensure the welding quality of U-shaped steel and steel plates to achieve the design failure mode. The average value of the yield displacement angle of the specimens was 0.005 rad, and the average ultimate displacement angle was 0.013 rad, indicating that the deformation capacity of SRCT shear wall was higher than the specification limit. In the range of 200-250 mm spacing between stud-tie bars, properly reducing the spacing between stud-tie bars could improve the ductility and energy dissipation capacity of the shear wall.-
Key words:
- SRCT shear wall /
- quasi-static test /
- seismic performance /
- failure mode /
- bearing capacity
-
[1] 程春兰,周德源,叶珊,等.低剪跨比带约束拉杆双钢板-混凝土组合剪力墙抗震性能试验研究[J].东南大学学报(自然科学版),2016,46(1):126-132. [2] DAN D.Experimental tests on seismically damaged composite steel concrete walls retrofitted with CFRP composites[J].Engineering Structures,2012,45:338-348. [3] 钱稼茹,江枣,纪晓东.高轴压比钢管混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2010,31(7):40-8. [4] QIAN J,JIANG Z,JI X.Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading[J].Engineering Structures,2012,36:173-184. [5] 赵作周,贺小岗,杨光,等.高轴压比下钢管高强混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2016,37(9):108-116. [6] 蒋冬启,肖从真,陈涛,等.高强混凝土钢板组合剪力墙压弯性能试验研究[J].土木工程学报,2012,45(3):17-25,78. [7] 陈涛,肖从真,田春雨,等.高轴压比钢-混凝土组合剪力墙压弯性能试验研究[J].土木工程学报,2011,44(6):1-7. [8] 聂建国,胡红松,李盛勇,等.方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(1):52-60. [9] 纪晓东,贾翔夫,钱稼茹.钢板混凝土剪力墙抗剪性能试验研究[J].建筑结构学报,2015,36(11):46-55. [10] DONG H,CAO W,WU H,et al.Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls[J].Earthquake Engineering and Engineering Vibration,2015,14(1):125-139. [11] 曹万林,张文江,张建伟,等.钢管混凝土边框内藏钢板组合剪力墙抗震研究[J].土木工程与管理学报,2011,28(3):219-225,53. [12] 聂建国,卜凡民,樊健生.高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J].工程力学,2013,30(6):60-16,76. [13] YAN J B,YAN Y Y,WANG T.Cyclic tests on novel steel-concrete-steel sandwich shear walls with boundary CFST columns[J].Journal of Constructional Steel Research,2020,164.DOI: 10.1016/j.jcsr.2019.105760. [14] YAN J B,LIU X M,LIEW J Y R,et al.Steel-concrete-steel sandwich system in arctic offshore structure:materials,experiments,and design[J].Materials& Design.2016,91:111-121. [15] 张晓萌.钢管束组合剪力墙抗震性能试验及理论研究[D].天津:天津大学,2016. [16] 陈志华,姜玉挺,张晓萌,等.钢管束组合剪力墙变形性能研究及有限元分析[J].振动与冲击.2017,36(19):36-45. [17] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社,2016. [18] 唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
点击查看大图
计量
- 文章访问数: 58
- HTML全文浏览量: 7
- PDF下载量: 2
- 被引次数: 0