DISSOLUTION BEHAVIOR OF HARMFUL ION IN MARINE SAND
-
摘要: 为验证海砂淡化的有效性和海砂氯离子测试方法的准确性,分别将海底砂、淡化砂和滩砂按照1∶5固液质量比加入去离子水、饱和氢氧化钙(Ca (OH)2)溶液和水泥净浆滤液中,在3 h、1 d、7 d和28 d抽取上部澄清液测试氯离子(Cl-)、硫酸根离子(SO42-)、钾离子(K+)、镁离子(Mg2+)和钠离子(Na+)浓度,结果表明:各种离子的释出量与浸泡介质类型有关;浸泡1 d后Cl-的释出量比3 h时增加14%~25%,此后趋于稳定,未发现海砂中Cl-长期不断释出的规律;将海砂磨成粉末(<75 μm)会降低海砂Cl-释出量;SO42-在饱和Ca (OH)2溶液和水泥净浆滤液中的释出量随浸泡时间延长而降低,在水泥混凝土内可不考虑海砂中SO42-溶出的风险;K+、Mg2+和Na+在去离子水中的释出量随浸泡时间延长而趋于稳定。Abstract: To verify the effectiveness of marine sand desalination and the accuracy of testing methods for chloride ion content from marine sand, submarine sand, desalted sea sand and seabeach sand immersed were respectively in three solvents that were deionized water, saturated calcium hydroxide, and filtrate of cement paste. The mass ratio of marine and solvent was 0.2. When the soaking time arrived at 3 h, 1 d, 7 d and 28 d, the dissolved quantities(DQ) of Cl-、SO42-、K+、Mg2+ and Na+ were measured. The experimental results showed that the DQ of five kinds of ion was related to the types of soaking solvents. As the soaking time went by, the DQ of Cl- in three solvents tended to stable, and it was hard to discover the continuous dissolution, while the test value in 24 h was 14%~25% higher than that in 3 h. If marine sand was grinded into power (<75 μm), the DQ of Cl- would decline. The dissolved mass of SO42- in the filtrate of cement paste and saturated calcium hydroxide was observed to decrease with the increase of soaking time, and it was not necessary to pay close attention to the influence of SO42- of sea sand concrete. Finally, the DQ of K+、Mg2+ and Na+ in deionized water would tend to stable with the increase of soaking time.
-
Key words:
- concrete /
- marine sand /
- harmful ion /
- immersion /
- dissolution
-
[1] 郑荣跃, 袁丽莉, 贺智敏. 宁波地区的海砂问题及其对策[J]. 混凝土, 2004(10):22-24. [2] 傅建彬. 海砂建筑材料资源化几个关键技术的研究[D]. 武汉:武汉大学, 2005. [3] 赵文成, 潭进财, 杨景鼎. 海砂用于混凝土构造物耐久性研究及使用管理[J]. 东南大学学报(自然版), 2006, 36(增刊2):160-166. [4] 景镇子, 成铭钊, 郦怡, 等. 基于水热固化技术的海砂利用研究[J]. 建筑材料学报, 2016, 19(4):613-618. [5] 赵毛媛. 海砂淡化技术的开发应用[J]. 建材工业信息, 1999(4):9-10. [6] 刘伟, 蒲正霖, 孙红芳, 等. 海砂中氯离子含量的影响因素研究[J]. 建筑材料学报, 2016, 19(5):921-925. [7] 刘伟, 谢友均, 董必钦, 等. 海砂特性及海砂混凝土力学性能的研究[J]. 硅酸盐通报, 2014, 33(1):15-22. [8] 范轶. 海砂的优选淡化技术及在水泥混凝土路面中的应用研究[D]. 广州:广东工业大学, 2014. [9] 孙炳全. 碱性活化水混凝土工艺及性能研究[D]. 大连:大连理工大学, 2011. [10] 黄华县. 海砂混凝土耐久性试验研究[D]. 广州:暨南大学, 2007. [11] 於林锋, 王琼, 施钟毅. 海砂的性能及新型净化工艺研究[J]. 粉煤灰, 2011, 23(5):12-14. [12] 郭元强. 不同参照标准对海砂氯离子含量测试结果的影响[J]. 新型建筑材料, 2019, 46(1):50-52. [13] 吴帅, 孙飞龙, 蒋荃. 试验条件对海砂氯离子检出值的影响分析[J]. 混凝土, 2016(2):87-89. [14] 吴帅. 海砂中氯离子含量检测方法的研究[D]. 北京:中国建筑材料科学研究总院, 2016. [15] 叶仙松, 李北星, 祝文凯, 等. 花岗岩石粉与矿物掺合料对胶浆氯离子结合性能的影响[J]. 武汉大学学报(工学版), 2018, 51(1):27-31. [16] ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic Potential of Hydrated Cement in Relation to Adsorption of Chlorides[J]. Cement and Concrete Research, 2009, 39(4):340-344. [17] SAEKI S, KANO J, SAITO F, et al. Effect of Additives on Dechlorination of PVC by Mechanochemical Treatment[J]. Journal of Material Cycles and Waste Management, 2001, 3(1):20-23.
点击查看大图
计量
- 文章访问数: 129
- HTML全文浏览量: 13
- PDF下载量: 2
- 被引次数: 0