EFFECT OF THE MOISTURE CONTENT ON MECHANICAL PROPERTIES OF FROZEN SILTY CLAY
-
摘要: 通过对大庆市季节性冻土区冻结粉质黏土不同含水率下抗剪和抗压力学性能的试验,得到低温度下黏聚力c、内摩擦角φ、抗剪强度及抗压强度与含水率的变化规律,以及最优含水率对其抗剪强度和抗压强度的影响;并对其初始弹性模量进行分析。研究结果表明:冻结粉质黏土的黏聚力c、内摩擦角φ随着含水率的增大呈现出先增后减趋势;其抗剪强度随着含水率的增加呈先增后减最后趋于稳定,且在最优含水率处达到最大值;抗压强度随着含水率的增大呈现先增后减的趋势,在含水率为25%左右时达到最大值,且抗压强度大小与最优含水率无关;其初始弹性模量随着含水率的增加呈现出先增后减的趋势。Abstract: The experimental analysis on shear and compressive mechanical properties of frozen silty clay in the seasonal frozen soil region of Daqing City was conducted. The variable rules of the cohesion, internal friction angles, shear strength, compressive strength and moisture content at low temperature and the influence of the optimum moisture content on shear strength and compressive strength were obtained, and the variable rules of initial elastic modulus were analyzed. The results showed that the cohesion and internal friction angle of the frozen silty clay presented a variable rule of first increase and then decrease with the increase of the moisture content; the shear strength increased first and then decreased with the increase of the moisture content, and finally tended to be stable; the shear strength was maximum at the optimum moisture content; the compressive strength increased first and then decreased with the increase of the moisture content, the compressive strength was maximum at the moisture content of 25%, and the compressive strength was unrelated to the optimal moisture content; the initial elastic modulus presented a variable rule of first increase and then decrease with the increase of the moisture content.
-
牛连僧, 姚兆明, 亓燕秋. 人工冻土单轴抗压强度灰色理论预测[J]. 安徽理工大学学报(自然科学版), 2014, 34(1):6-10. 雷乐乐, 谢艳丽, 王大雁,等. 冻土静力学室试验研究进展[J]. 冰川冻土, 2018,40(4):802-811. 黄琨,万军伟,陈刚,等.非饱和土的抗剪强度与含水率关系的试验研究[J]. 岩土力学,2012,33(9):2600-2604. 李宣,孙德安.非饱和砂土和粉土的抗剪强度及其预测[J].工业建筑,2017,47(3):102-106,136. MINABE Y, KAWAJIRI S, KAWAGUCHI T, et al. Correlation Between Mechanical Properties and Suction Calculated by X-Ray CT of Unsaturated Sandy Soil[J]. Procedia Engineering, 2016, 143:291-299. TSYTOVICH N A. 冻土力学[M].张长庆, 朱元林, 译.北京:科学出版社, 1985. ZHAO X D, ZHOU G Q, WANG J Z. Deformation and Strength Behaviors of Frozen Clay with Thermal Gradient Under Uniaxial Compression[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2013, 38:550-558. CHAE D K, HWANG B S, CHO W J. Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents[J]. Journal of the Korean Geoenvironmental Society, 2015, 16(6):31-38. ZHANG S Y. Comparative Experimental Research of Soil Freezing with Pressure and Non-Pressure[J]. Advances in Civil and Industrial Engineering,2014(48/49/50/51):550-583. ZHANG D, LI Q M, LIU E L, et al. Dynamic Properties of Frozen Silty Soils with Different Coarse-Grained Contents Subjected to Cyclic Triaxial Loading[J]. Cold Regions Science and Technology, 2019, 157:64-58. 牛亚强, 赖远明, 王旭,等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J].岩土力学,2016,37(2):499-506. 杜海民, 马巍, 张淑娟, 等.应变率与含水率对冻土单轴压缩特性影响研究[J].岩土力学, 2016, 37(5):1373-1379. 黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5):1346-1352. 彭光堂. 水泥改良砂质粉土低温直剪试验研究[D]. 北京:北京交通大学, 2011. 朱磊,谢强,任新红,等.川藏线季节性粗颗粒冻土抗剪强度特性试验研究[J].铁道学报,2018,40(3):107-111.
点击查看大图
计量
- 文章访问数: 98
- HTML全文浏览量: 6
- PDF下载量: 13
- 被引次数: 0