NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES
-
摘要: 基于FLAC3D有限差分软件,对普通抗拔桩和托底抗拔桩进行数值模拟分析,对比研究两种抗拔桩的荷载-位移曲线、桩身轴力传递特性及桩侧摩阻力分布等特性。结果表明:普通抗拔桩的极限承载力小于托底抗拔桩的极限承载力,荷载相同时普通抗拔桩的位移更大;两种桩型的荷载-位移曲线均主要由线性段构成,普通抗拔桩和托底抗拔桩在极限状态时均发生"突变型破坏";托底抗拔桩桩身轴力由下向上传递,普通抗拔桩桩身轴力由上向下传递,两者的轴力沿深度分布形式相反:普通抗拔桩轴力随深度增加而减小,托底抗拔桩随深度增加而增大;两种桩的摩阻力分布曲线相似,上部小,中下部大;荷载水平较低时,托底抗拔桩上部摩阻力大于普通抗拔桩,荷载水平较高时,除了桩端附近,托底抗拔桩全桩摩阻力均大于普通抗拔桩;桩侧摩阻力与桩土相对位移关系呈双曲线型分布。Abstract: Based on the finite difference software FLAC3D, the numerical simulations of tensile piles and bottom-uplifted piles were conducted. Load-displacement curves, transfer of axial forces characteristics and distribution characteristics of lateral friction for the two types of piles were studied and compared respectively. The results showed that the ultimate bearing capacity of tensile piles was smaller than that of bottom-uplifted piles, and subjected to the same loads, the displacement of tensile piles was larger than that of bottom-uplifted piles. Load-displacement curves were mainly composed of broken lines. In the ultimate state, tensile or bottom-uplifted piles all failed suddenly. The axial forces in bottom-uplifted piles were transferred from the bottom to the top, and the axial forces in tensile piles were from the top to the bottom. For the two types of piles, the forms of axial forces along the shafts were opposite. With the growth of depth, the axial forces of tensile piles decreased, while that of bottom-uplifted piles increased. The lateral friction of tensile piles was similar to that of bottom-uplifted piles, which was smaller on the upper part of piles and larger on the middle and lower part of piles. Subjected to lesser loads, the upper lateral friction on bottom-uplifted piles was larger than that on tensile piles. Subjected to larger loads, except near pile tips, the lateral friction on the whole bottom-uplifted piles was larger than that of tensile piles. The curves on lateral friction and relative displacement between piles and soil were hyperbolic.
-
Key words:
- numerical simulation /
- tensile pile /
- bottom-uplifted pile /
- load transfer /
- lateral friction of pile
-
HONG W P, CHIM A N. Prediction of Uplift Capacity of a Micropile Embedded in Soil[J]. KSCE Journal of Civil Engineering, 2015,19(1):116-126. ILAMPARUTHI K, DICKIN E A. Predictions of the Uplift Response of Model Belled Piles in Geogrid-Cell-Reinforced Sand[J]. Geotextiles and Geomembranes,2001,19(2):89-109. 钱建固, 马霄, 李伟伟, 等. 桩侧注浆抗拔桩离心模型试验与原位测试分析[J]. 岩土力学, 2014(5):1241-1246. 陈小强, 赵春风, 甘爱明. 砂土中抗拔桩与抗压桩模型试验研究[J]. 岩土力学, 2011(3):102-108. 张明,蓝永基,丘华生,等.无黏结预应力施工技术在大吨位抗拔桩中的应用[J].施工技术,2011,40(18):22-25. DASH B K, PISE P J. Effect of Compressive Load on Uplift Capacity of Model Piles[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129(11):987-992. DESHMUKH V B, DEWAIKAR D M, CHOUDHURY D. Computations of Uplift Capacity of Pile Anchors in Cohesionless Soil[J]. Acta Geotechnica, 2010, 5(2):87-94. 张忠苗, 刘念武, 房凯. 考虑端承力时泊松效应对抗拔系数的影响[J]. 岩土工程学报, 2011, 33(增刊2):494-497. 高盟, 尹诗, 高运昌, 等. 风浪荷载作用下扩底桩基础桩周土应力特征分析[J]. 地震工程学报, 2019, 41(2):378-384. 丁佩民, 黄堂松, 肖志斌. 抗拔桩侧摩阻力发挥规律的探讨[J]. 建筑科学, 2003, 19(6):46-48. 许宏发, 罗国煜, 廖铁平, 等. 等截面桩的抗拔机理研究[J]. 工程勘察, 2003(3):6-8,36. 李广信, 黄锋, 帅志杰. 不同加载方式下桩的摩阻力的试验研究[J]. 工业建筑, 1999, 29(12):19-21. 赵晓光, 高文生, 迟铃泉. 抗拔灌注桩预应力技术的试验研究初探[J]. 建筑科学, 2012, 28(9):51-56. 邵光辉, 赵志峰, 吴正余. 托底抗拔桩承载特性的模型试验研究[J]. 岩土工程学报, 2016, 38(6):1140-1146. AMIRA M, YOKOYAMA Y, IMAIZUMI S. Effect of Pile Compressibility on Shaft Friction Capacity[J]. Doboku Gakkai Ronbunshu, 2010, 1996,547:1-10. 潘先文. 复合土层中托底抗拔桩承载特性研究[D]. 南京:南京林业大学,2017:10-69. 黄锋,黄文峰,李广信,等.不同受载方式下桩侧阻的渗水力模型试验研究[J].岩土工程学报,1998(2):10-14. 钱玲玲, 范柱国. FLAC3D在分析单桩竖向荷载作用下桩-土相互作用规律中的数值模拟研究[J]. 科学技术与工程, 2010, 10(33):8309-8312. 包彦冉,马海龙,雷珊珊.桩侧摩阻力-桩土相对位移试验曲线及其拟合分析[J].浙江理工大学学报(自然科学版),2020,43(1):102-108.
点击查看大图
计量
- 文章访问数: 61
- HTML全文浏览量: 6
- PDF下载量: 3
- 被引次数: 0