Research on Influence Coefficient and Displacement Amplification Factor of High-Strength Steel Composite Y-Type Eccentrically Braced Structures
-
摘要: 高强钢组合Y形偏心支撑结构是指耗能梁段采用普通钢材(fy≤345 MPa),保证地震作用下结构具有良好的塑性变形能力,框架梁、柱采用高强钢(fy≥460 MPa)降低构件截面尺寸,同时保证非耗能构件的弹性受力状态,该新型结构具有良好的延性和耗能能力。结构影响系数R是基于性能的抗震设计方法中至关重要的部分,若R取值合理,则结构抗震设计更加安全、合理、经济。我国2016版GB 50011—2010《建筑抗震设计规范》中隐藏了结构影响系数的概念,且对所有的结构体系取统一值,显然不尽合理。研究高强钢组合Y形偏心支撑结构的结构影响系数和位移放大系数可进一步优化结构性能化设计方法,为该类型结构今后的设计取值提供参考依据。为此对12个Y形偏心支撑钢框架有限元模型进行静力弹塑性分析和增量动力分析(IDA分析),得到结构的性能曲线。利用能力谱法计算各原型结构的R、Cd、Rμ和RΩ,分析结构层数N和耗能梁段长度e对各性能系数的影响。对比Pushover分析和IDA分析所得结果,提出了各性能系数的建议取值。
-
关键词:
- 静力弹塑性分析 /
- 增量动力分析 /
- 结构影响系数 /
- 位移放大系数 /
- 高强钢组合Y形偏心支撑结构
Abstract: The high-strength steel composite Y-type eccentrically braced structure is a new type structure. Ordinary steel (fy≤345 MPa) is utilized in links to ensure the structure has good plastic deformation capacity under strong earthquake, and high-strength steel (fy≥460 MPa) is used in frame beams and columns to reduce the cross-sectional size while ensuring the elastic stress state of non-energy consuming components. The new structure has good ductility and energy-dissipating capacity. The structural influence coefficient R is a crucial part of the performance-based seismic design method. If a reasonable value of R is used, the seismic design of structure will be safer, more reasonable, and more economical. It is obviously not reasonable to hide the concept of the structural influence coefficient and adopt a fixed value for all structural systems in the 2016 edition of China’s Code for Seismic Design of Buildings (GB 50011—2010). The research can not only improve the structural performance design method, but also provide a reference for the future design of the structure. The static elastic-plastic analysis (Pushover analysis) and incremental dynamic analysis (IDA analysis) were carried out on 12 finite element models of high-strength steel composite Y-type eccentrically braced frames, and the data obtained by IDA analysis were fitted to reach the IDA performance curve of the structure. The R, Cd, Rμ and RΩ of each prototype structure were calculated by the capability spectrum method, the effects of the number of structural story N and the length of link e on performance coefficients were analyzed. Comparing the results of Pushover analysis and IDA analysis, the proposed values of each performance coefficient were proposed to provide a reference for the performance design of the new structural systems in the future. -
[1] 童根树, 赵永峰. 中日欧美抗震规范结构影响系数的构成及其对塑性变形需求的影响[J]. 建筑钢结构进展, 2008,10(5):53-62. [2] 杨文侠, 顾强, 宋振森, 等. Y形偏心支撑钢框架的地震反应折减系数和超强系数[J].工程力学,2012,29(10):129-136. [3] ALI K, NILOUFAR M. Response modification factor of concentrically braced frames with hexagonal pattern of braces[J]. Journal of Constructional Steel Research, 2018, 148(9):658-668. [4] 杨俊芬, 顾强, 何涛,等. 用增量动力分析方法求解人字形中心支撑钢框架的结构影响系数和位移放大系数(Ⅰ):方法[J]. 地震工程与工程振动, 2010, 30(2):64-71. [5] IZADINIA M, RAHGOZAR M A, MOHAMMADREZAEI O. Response modification factor for steel moment-resisting frames by different pushover analysis methods[J]. Journal of Constructional Steel Research, 2012, 79(12):83-90. [6] YAGHMAEI-SABEGH S, NEEKMANESH S, RUIZ-GARCÍ A, et al. Evaluation of approximate methods for estimating maximum displacement response of MDOF systems [J]. Soil Dynamics and Earthquake Engineering, 2017, 101:125-136. [7] ALIAKBARI F, SHARIATMADAR H. Seismic response modification factor for steel slit panel-frames[J]. Engineering Structures, 2019, 181(2):427-436. [8] 曹建, 顾强. 单斜杆偏心支撑钢框架结构影响系数[J].苏州科技学院学报(工程技术版),2010,23(2):26-31. [9] 陆懿, 顾强. 多层抗弯钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2008,21(4):1-4,13. [10] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010. [11] 李慎, 苏明周. 基于性能的偏心支撑钢框架抗震设计方法研究[J].工程力学,2014,31(10):195-204.
点击查看大图
计量
- 文章访问数: 60
- HTML全文浏览量: 4
- PDF下载量: 6
- 被引次数: 0