INTELLIGENT FEEDBACK ANALYSIS OF FLUID-SOLID COUPLING ON ADJOINING ROCK OF TUNNELS IN RICH WATER ZONES BASED ON THE GP-DE METHOD
-
摘要: 为实现富水区隧道建设的参数反馈优化,基于机器学习和智能优化算法建立了流固耦合条件下的隧道参数反分析方法。首先,建立工程数值计算模型,采用流固耦合模型进行求解;以正交设计分析的形式获得不同岩体参数组合条件下的围岩位移及孔隙水压分布情况,建立机器学习所需的学习样本,其中输入组为各岩体参数集,输出组为围岩位移及孔隙水压;其次,采用高斯回归过程获取学习样本所蕴含的非线性映射关系,并通过差异进化算法优化这个过程所涉及的关键参数集;然后,根据所建立的回归模型,根据目标区域的实测位移及孔隙水压,再次采用差异进化算法对岩体参数进行寻优计算,获得参数反分析结果。最后,将反演值与实测值进行对比,验证反分析得到的围岩参数的可靠性。Abstract: In order to achieve feedback optimization of parameters under tunnel construction in rich water zones, a feedback analysis method for tunnel parameters in fluid-solid coupling conditions was established based on the machine learning and intelligent optimization algorithm. Firstly, the numerical calculation model was modelled and solved by the fluid-solid coupling model. The displacement of adjoining rock and the distribution of pore water pressure in different combination of rock parameters were obtained by orthogonal design analysis, and the learning samples for machine learning were established, in which the input group was consisted of a set of rock parameters and the output group was consisted of adjoining rock displacement and pore water pressure. Then, Gaussian Regression Process was used to obtain the non-linear mapping relation contained the learning samples, and differential evolution algorithm was used to optimize the key parameters involved in the process. Furthermore, according to the established regression model and the measured displacement and pore water pressure in the target zone, the differential evolution algorithm was used to optimize the rock parameters and the parameter feedback analysis results were obtained. Finally, the inverse values were compared with the actual measured values, and the reliability of the adjoining rock parameters obtained from the feedback analysis was verified.
-
梁正召,张永彬,唐世斌,等. 岩体尺寸效应及其特征参数计算[J]. 岩石力学与工程学报,2013,32(6):1157-1166. 徐科,沈才华,胡玉田,等.挤密砂桩复合地基的多参数位移反分析研究[J].公路工程,2017,42(1):240-243. MISHRA V, SINGH K N. Microstructural Relation of Macerals with Mineral Matter in Coals from Ib Valley and Umaria,Son-Maha Nadi Basin,India[J]. International Journal of Coal Science & Technology,2017,4(2):191-197. SHAO Y, MACARI E. Information Feedback Analysis in Deep Excavations[J]. International Journal of Geomechanics, 2008, 8(1):91-103. 曾永军,胡亮,黄梅.山岭隧道围岩参数反演研究[J].武汉理工大学学报(交通科学与工程版),2018, 42(1):72-76. KAVANAGH K T, CLOUGH R W. Finite Element Applications in the Characterization of Elastic Solids[J]. International Journal of Solids and Structures,1971, 7(1):11-23. LU H F, YUAN B Y, WANG L. Rock Parameters Inversion for Estimating the Maximum Heights of Two Failure Zones in Overburden Strata of a Coal Seam[J]. Mining Science and Technology (China), 2011, 21(1):41-47. 李守巨, 刘迎曦, 孙伟. 智能计算与参数反演[M]. 北京:科学出版社, 2008. 葛宏伟,梁艳春,刘玮,等. 人工神经网络与遗传算法在岩石力学中的应用[J]. 岩石力学与工程学报,2004,23(9):1542-1550. 张继勋,杨帆,任旭华,等.基于遗传算法的地下洞室围岩力学参数反分析[J].现代隧道技术,2018,55(6):53-58. 张太俊, 徐磊. 基于异步粒子群优化算法的边坡工程岩体力学参数反演[J]. 三峡大学学报, 2014, 36(1):38-41. 冯夏庭,张治强,杨成祥,等. 位移反分析的进化神经网络方法研究[J]. 岩石力学与工程学报,1999,18(5):529-633. 邓建辉,李焯芬,葛修润. BP网络和遗传算法在岩石边坡位移反分析中的应用[J]. 岩石力学与工程学报,2001,20(1):1-5. 周冠南,孙玉永,贾蓬.基于遗传算法的BP神经网络在隧道围岩参数反演和变形预测中的应用[J].现代隧道技术,2018,55(1):107-113. 王军祥, 董建华, 陈四利. 基于DEPSO混合智能算法的岩土体应力-渗流-损伤耦合模型多参数反演研究[J]. 应用基础与工程科学学报, 2018, 26(4):872-887. 李义罡,焦朋朋,乔伟栋.基于改进粒子群优化BP神经网络的弯道转向行为预测[J].公路交通科技, 2019,36(10):128-136. RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Massachusetts:MIT Press, 2006. 李术才,赵岩,徐帮树,等. 海底隧道涌水量数值计算的渗透系数确定方法[J].岩土力学,2012, 33(5):1497-1512.
点击查看大图
计量
- 文章访问数: 73
- HTML全文浏览量: 9
- PDF下载量: 1
- 被引次数: 0