Anti-implosion Performances of Steel Pipes Strengthened with CFRP Sheets
-
摘要: 为研究内爆荷载下碳纤维复材(Carbon Fiber Reinforced Plastic,CFRP)加固输油气钢管的受力性能,开展了8根CFRP加固钢管试件的内爆试验。试验中考虑了乳化炸药质量及碳纤维布层数的变化对加固钢管抗内爆性能及最终破坏模式的影响。结果表明:设置相同碳纤维布层数的试件,其管身轴向裂纹随乳化炸药量的增加而增长;同时,该类试件的CFRP加固层随乳化炸药量的增加由开裂剥离失效逐渐演化为碎片化剥离破坏;此外,随碳纤维布层数的增加,相同炸药量导致的钢管轴向裂纹扩展长度逐渐缩小,进而转变为环向扩展,表现出良好的限爆效果。最后,通过对CFRP加固钢管的受力分析,提出内爆荷载下的钢管管壁受力计算模型。Abstract: To study the anti-implosion performance of steel pipes strengthened with carbon fiber reinforced plastic (CFRP) sheets, a total of 8 specimens were tested under implosion impact. The weight of emulsion explosive and the number of CFRP sheets for strengthening were taken into account in the experiments. The experimental results demonstrated that, for specimens strengthened with the same number of CFRP sheets, the axial cracks on the pipe wall increased with the increase of the emulsion explosive weight. Besides, for these specimens, the CFRP layer failed from cracking failure to fragmentation failure with the increase of the emulsion explosive weight. Additionally, for specimens with the same emulsion explosive weight, the cracks on the pipe wall developed marginally in the axial direction, and then developed in the hoop direction, which demonstrated the anti-implosion effect of the strengthened CFRP layer. Finally, by conducting the mechanical analysis, a theoretical model was proposed for analyzing CFRP strengthened steel pipes under implosion impact.
-
Key words:
- steel pipe /
- CFRP /
- anti-implosion performance /
- strengthening /
- failure mode
-
[1] 宫川宝.天然气长输管道L320钢管腐蚀失效分析[J].腐蚀科学与防护技术,2017,29(3):63-66. [2] 马明利.庆-哈输油管道腐蚀缺陷评估与补强技术研究[D].大庆:东北石油大学,2011. [3] TOUTANJI H, DEMPSEY S. Stress modeling of pipelines strengthened with advanced composites materials[J]. Thin-walled Structures, 2001,39(2):153-165. [4] 杨勇新,彭福明,岳清瑞.纤维增强复合材料加固金属管线的应力分析[J].港工技术,2005(4):17-19. [5] 魏晓斌,雷艳,霍国良,等. 水电站压力钢管碳纤维布补强加固试验研究[J].武汉大学学报(工学版), 2010, 43(6):708-710,718. [6] 张伟超,李彪.玄武岩纤维布加固钢管研究[J].钢结构,2017,32(8):77-79. [7] 王德宝,马宏昊,沈兆武,等.内爆炸撕裂圆形钢管的试验研究[J].爆破,2013,30(4):1-4,19. [8] 陈虎,沈正祥,王杜,等.内爆载荷作用下圆柱钢壳的动态破碎性能[J].高压物理学报,2018,32(5):85-91. [9] 黄辉,贾彬,王文炜,等.内压作用下CFRP/钢复合管受力性能试验研究[J]. 应用基础与工程科学学报,2021, 29(4):1007-1018. [10] 何箐.内压作用下FRP/钢复合管承载力分析与试验研究[D].绵阳:西南科技大学,2019. [11] 中国复合材料工业协会.碳纤维复合材料加固修复化工管道技术规范:T/CIA B001-2019[S].北京:中国标准出版社,2019. [12] 杨帆,支旭东,范峰.K8型单层球面网壳基于AUTODYN的外爆响应分析[J].工程力学,2015,32(增刊1):202-208. [13] 吴赛.爆炸荷载作用下钢管混凝土柱的动力响应及损伤评估[D].西安:长安大学, 2015. [14] 贾进章,冯路阳.密闭直管内瓦斯爆炸温度和压力的实验研究[J].爆破器材,2018,47(1):22-25. [15] 杨伯源.工程弹塑性力学[M].天津:天津大学出版社,2003. [16] HENRYCH J. The dynamics of explosion and its use[M]. Amsterdam:Elsevier Scientific Publishing Company, 1979. [17] 范俊余,方秦,张亚栋,等.岩石乳化炸药TNT当量系数的试验研究[J]. 兵工学报,2011, 32(10):1243-1249. [18] 甘露,陈力,宗周红,等.近距离爆炸比例爆距的界定标准及荷载模型[J]. 爆炸与冲击,2021, 41(6):1-12. [19] 李忠献,师燕超.建筑结构抗爆分析理论[M].北京:科学出版社,2015.
点击查看大图
计量
- 文章访问数: 98
- HTML全文浏览量: 5
- PDF下载量: 2
- 被引次数: 0