EXPERIMENTAL STUDY ON TENSILE PROPERTIES OF CFRP GRIDS UNDER THE COUPLING OF SEAWATER IMMERSION AND STRESS
-
摘要: 为研究海洋腐蚀环境下碳纤维复材(CFRP)网格拉伸力学性能的变化规律,开展了海水环境下不同初始应力水平和不同海水浸泡老化时间下CFRP网格单肢拉伸性能试验。结果表明:CFRP网格表面侵蚀程度随老化时间增加,表面颜色变深,失去基体原有光泽,变得粗糙;破坏模式由前期大部分试件的拉断破坏到后期的炸裂破坏,在高应力水平下(0.6fu),个别试件出现分层破坏,破坏现象更加明显。此外,在海水中浸泡360 d后,应力水平为0、0.3fu和0.6fu的CFRP网格抗拉强度保留率分别为89.8%、87.7%和79.8%,弹性模量保留率分别为96.4%、95.0%和92.9%;表明应力的存在加速了网格强度的退化,且随着应力水平的提高,CFRP网格抗拉强度和弹性模量的退化更加明显。Abstract: In order to study the change law of the tensile mechanical properties of CFRP (Carbon Fiber Reinforced Polymer) grids in marine corrosive environment, a single-limb tensile performance test of CFRP grids with different initial stress levels in seawater environment was carried out. The results show that the degree of surface erosion of the CFRP grid increases with aging time, the surface color becomes darker, the original gloss of the matrix is lost, and it becomes rough; the failure mode is from the tensile failure of most specimens in the early stage to the burst failure in the later stage. At the level of (0.6 fu), individual specimens showed layered damage, and the damage was more obvious. In addition, after immersed in seawater for 360 days, the retention rates of tensile strength of CFRP grids with stress levels of 0, 0.3 fu and 0.6 fu were 89.8%, 87.7% and 79.8%, respectively, and the retention rates of elastic modulus were 96.4% and 95.0% and 92.9%, respectively. Indicating that the presence of stress accelerates the degradation of the mesh strength, and as the stress level increases, the degradation of the tensile strength and elastic modulus of the CFRP mesh becomes more obvious.
-
Key words:
- CFRP grid /
- seawater immersion /
- stress level /
- tensile strength /
- elastic modulus
-
岳清瑞,彭福明,杨勇新,等. 碳纤维片材耐久性初步研究[J]. 工业建筑, 2004, 34(1):8-11. 杨勇新,岳清瑞,郭春红,等.FRP耐久性评价方法[J].工业建筑,2006,36(8):6-9. 刘宗全. FRP网格材在土木工程中的应用[C]//中国土木工程学会FRP及工程应用专业委员会.第九届全国建设工程FRP应用学术交流会论文集.2015:111-115. 刘宗全,岳清瑞,李荣,等.碳纤维复材网格锚固长度试验研究[J].工业建筑,2016,46(5):18-22. 中国治金建设协会. 纤维增强复合材料建设工程应用技术规范:GB 50608-2010[S].北京:中国计划出版社, 2011. 王伟,薛伟辰,钱文军,等.FRP筋耐久性试验方法研究进展[J].河北工程大学学报(自然科学版),2008(1):1-4. LIU J, GE H, CHEN J, et al. The Preparation of Emulsion Type Sizing Agent for Carbon Fiber and the Properties of Carbon Fiber/Vinyl Ester Resin Composites[J]. Journal of Applied Polymer Ence, 2012, 124(1):864-872. 薛伟辰,王伟,付凯.碱环境下不同应力水平GFRP筋抗拉性能试验[J].复合材料学报,2013,30(6):67-75. 邓宗才,高伟男,沈锋.碱、盐环境下不同应力水平FRP筋抗压强度试验与理论研究[J].复合材料学报,2017,34(10):2220-2231. 王自柯. FRP筋在模拟海水-海砂混凝土孔溶液浸泡下的耐久性研究[D].哈尔滨:哈尔滨工业大学,2018. BENMOKRANE B, WANG P, TON-THAT T M, et al. Durability of Glass Fiber-Reinforced Polymer Reinforcing Bars in Concrete Environment[J].Journal of Composites for Construction, 2002,6(3):143-153. NKURUNZIZA G, BENMOKRANE B, DEBAIKY A S, et al. Effect of Sustained Load and Environment on Long-Term Tensile Properties of Glass Fiber-Reinforced Polymer Reinforcing Bars[J].ACI Structural Journal, 2005,102(4):615-621. 中国国家标准化管理委员会.结构工程用纤维增强复合材料网格:GB/T 36262-2018[S].北京:中国标准出版社,2018. 中国国家标准化管理委员会.船用金属材料电偶腐蚀试验方法:GB/T 15748-2013[S].北京:中国标准出版社,2013. 万先虎. 高温干湿交替环境下FRP-混凝土界面黏结性能的耐久性研究[D].哈尔滨:哈尔滨工业大学,2013. THOMASON J L. The Interface Region in Glass Fibre-Reinforced Epoxy Resin Composites:2. Water Absorption, Voids and the Interface[J]. Composites, 1995, 26(7):477-485. 方毅. 湿热老化对碳纤维/环氧树脂板材拉伸疲劳性能的影响[D].哈尔滨:哈尔滨工业大学,2016. 岳清瑞,杨勇新,郭春红,等.浸渍树脂快速与自然老化试验对应关系[J].工业建筑,2006,36(8):1-5. 郭春红,杨勇新,岳清瑞,等.浸渍树脂干湿交变试验[J].工业建筑,2006,36(8):16-17. 田莉莉, 刘道新, 张广来,等. 温度和应力对碳纤维环氧复合材料吸湿行为的影响[J]. 玻璃钢/复合材料, 2006(3):15-19. 过梅丽,肇研,谢令.航空航天结构复合材料湿热老化机理的研究[J].宇航材料工艺,2002(4):51-54. 杨勇新,陈伟,马明山.海水干湿交变环境下玄武岩纤维布耐久性能[J].工业建筑,2010,40(4):5-8,26.
点击查看大图
计量
- 文章访问数: 50
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0