PARAMETRIC VIBRATION MODELING AND RESONANCE ANALYSIS FOR TENSION SUSPENSION CABLE UNDER HORIZONTAL MOVABLE BOUNDARY
-
摘要: 建立了水平可动边界下张紧悬索参数振动模型,基于哈密顿变分准则推导了该模型下拉索的偏微分振动方程,根据边界约束条件、模态叠加法以及Galerkin法将该偏微分方程转化为常微分方程。通过摄动法分析了悬索的共振模式,利用四阶Runge-Kutta法求解了不同共振模式下悬索的位移响应,并评估了不同共振模式下水平激励的频率对张紧悬索位移响应的影响,最后进行了算例分析。分析表明:1:1:1:1共振模式下x轴方向的位移仅为1:1:2:1共振模式下的31.25%,1:1:1:1共振模式下z轴方向的位移仅为1:1:2:1共振模式下的2.181%,1:1:1:1共振模式相比1:1:2:1共振模式较为安全;水平激励的频率因尽量远离面内的自振频率,以保障悬索的幅值处于安全区间。Abstract: The model of parametric vibration for tension suspension cable with horizontal movable boundary is established, and the partial differential vibration equation was derived by Hamilton Principles. According to the boundary constraint, modal superposition method, and Galerkin method, the partial differential equation was transformed into an ordinary differential equation. The modes about resonance of the ordinary differential equation were analyzed by the perturbation method, and the displacement responses of the tension suspension cable under different resonance modes were solved by using the fourth-order Runge-Kutta function. Finally, the safety of the two resonance modes was evaluated by a specific numerical example. The results showed that the displacement of the x-axis in the 1:1:1:1:1 resonance mode was only 31.25% of that in the 1:1:2:1 resonance mode, and the displacement of the z-axis in the 1:1:1:1:1 resonance mode was only 2.181% of that in the 1:1:2:1 resonance mode. The frequency of horizontal excitation was far away from the in-plane natural frequency as far as possible to ensure that the amplitude of the cable was in a safe range.
-
Key words:
- moving boundary /
- cable /
- parametric vibration /
- resonance /
- method of multiple scales
-
[1] IRVINE H M, CAUGHEY T K. The Linear Theory of Free Vibrations of a Suspended Cable[J]. Proceedings of the Royal Society A,1974, 341(1626):299-315. [2] WU J S, CHEN C C. The Dynamic Analysis of a Suspended Cable Due to a Moving Load[J]. International Journal for Numerical Methods in Engineering, 1989, 28(10):2361-238. [3] PERKINS N C. Modal Interactions in the On-Linear Response of Elastic Cables Under Parametric/External Excitation[J]. International Journal of Non-Liner Memhanics,1992,27(2):233-250. [4] LUONGO A, PICCARDO G. Non-Linear Galloping of Sagged Cables in 1:2 Internal Resonance[J]. Journal of Sound and Vibration,1998, 214(5):915- 940. [5] REGA G. Nonlinear Vibrations of Suspended Cables-Part I:Modeling and Analysis[J]. Appl Mech Rev, 2004, 57(6):443-478. [6] REGA G. Nonlinear Vibrations of Suspended Cables-Part II:Deterministic Phenomena[J]. Appl Mech Rev, 2004, 57(6):479-514. [7] IBRAHIM R A. Nonlinear Vibrations of Suspended Cables-Part III:Random Excitation and Interaction with Fluid Flow[J]. Appl Mech Rev, 2004, 57(6):515-549. [8] 赵跃宇,李永鼎,王连华.悬索的多重内共振研究[J].力学季刊,2008(1):15-23. [9] 吕建根,康厚军.考虑弯曲刚度斜拉索面内面外内共振分析[J].力学季刊,2016,37(3):572-580. [10] 杨素哲,陈艾荣.超长斜拉索的参数振动[J].同济大学学报(自然科学版),2005(10):27-32. [11] 赵珧冰,黄超辉,林恒辉,等.考虑温度效应的索梁面内动力学建模及特性分析[J].力学季刊,2018,39(3):573-579. [12] 彭剑,李禄欣,赵珧冰,等.轴向时滞反馈控制下悬索非线性响应分析[J].应用力学学报,2018,35(1):81-85. [13] 闵光云,刘小会,孙测世,等.动张力简化方法对输电线舞动的影响研究[J].应用力学学报,2020,37(4):1717-1723. [14] 汪峰,文晓旭,刘章军.斜拉桥塔-索-桥面连续耦合参数振动特性分析[J].应用力学学报,2015,32(2):340-346,360. [15] 刘小会,闵光云,孙测世,等.直接法与间接法对拉索耦合内共振的影响研究[J].应用力学学报,2020,37(03):1088-1098. [16] 陈水生,孙炳楠.斜拉桥索-桥耦合非线性参数振动数值研究[J].土木工程学报,2003(4):70-75. [17] 康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动[J].中南大学学报(自然科学版),2011,42(8):2439-2445. [18] 刘小会,闵光云,严波,等.不同自由度下覆冰四分裂导线舞动特征分析[J].力学季刊,2020,41(2):370-383. [19] HUANG K, FENG Q, YIN Y. Nonlinear vibration of the coupled structure of suspended-cable-stayed beam-1:2 internal resonance[J]. Acta Mechanica Solida Sinica, 2014, 27(5):467-476. [20] COSTA A P, MARTINS J A C, BRANCO F, et al. Oscillations of Bridge Stay Cables Induced by Periodic Motions of Deck and/or Towers[J]. Journal of Engineering Mechanics, 1996, 122(7):613-622. [21] 汪至刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2001(1):103-109. [22] 闵光云,刘小会,蔡萌琦,等.考虑温度效应的覆冰导线动力学建模及舞动特征研究[J].力学与实践,2021,43(1):84-93.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 4
- PDF下载量: 1
- 被引次数: 0