STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS
-
摘要: 为解决环境激励下古建筑木结构的损伤量化问题,根据层合理论提出用有限元分层实体单元将木材分为损伤表层和中间无损伤层的方法。引入损伤深度作为新参数,以小波总能量变化率为损伤识别指标,共同作为特征参数输入反向传播(BP)神经网络,以弹性模量折减率为输出参数对损伤进行多维量化。分别将该方法应用于一榀木结构框架和西安钟楼模型,识别结果最大误差不超过2%,表明通过分层实体单元模拟木材损伤并引入损伤深度为参数量化木梁损伤是可行的,能够为环境激励下古建筑木结构梁损伤预警研究和复杂结构局部损伤分析提供参考理论。Abstract: To quantify damage of ancient timber structures under ambient excitation, according to the lamination theory, a method was proposed to divide wood into damaged surface layers and undamaged middle layers by layered solid elements of the finite element method. The damage depth was taken as a new variable, combined with the total energy-change rates of wavelets as feature parameters and input into an improved BP neural network, and the reduction ratios of elastic moduli were considered as output parameters. Appling the method respectively to multi-scale models of a timber frame and Xi'an Bell Tower, the result showed that the maximum error of identification results was less than 2%, which meant it feasible to simulate wood damage by layered solid elements and adopt the damage depth as a parameter to quantify the damage of wood beams, which could provide reference for the study of damage early warning and local damage analysis of complex structures under ambient excitation
-
张岩, 杨娜. 环境激励下古建筑木结构模态参数识别与分析[J]. 武汉理工大学学报, 2010(9):301-305. 王鑫, 胡卫兵, 孟昭博. 基于小波包能量曲率差的古木结构损伤识别[J]. 振动与冲击, 2014, 33(7):153-159. 谢启芳, 崔雅珍, 赵鸿铁, 等. 古建筑木结构修缮加固时木材材料强度取值探讨[J]. 福州大学学报(自然科学版), 2013, 41(4):483-486. NIMA K,HAMID R V,KEITH C.Nonlinear Finite Element Analysis of Timber Beams and Joints Using the Layered Approach and Hypoelastic Constitutive Law[J].Engineering Structures, 2013,46:606-614. 赵中伟, 陈志华, 刘红波, 等. 基于多尺度模型的大跨度钢结构弹塑性动力响应研究[J]. 地震工程与工程振动, 2016, 36(2):167-174. 姜绍飞, 吴铭昊, 唐伟杰, 等. 古建筑木结构多尺度建模方法及抗震性能分析[J]. 建筑结构学报, 2016, 37(10):44-53. 项贻强, 郏亚坤. 基于小波总能量相对变化的结构损伤识别[J]. 振动与冲击, 2017, 36(14):38-44. ROSSO O A, M.T. MARTIN, A. FIGLIOLA, et al. EEG Analysis Using Wavelet-Based Information Tools[J]. Journal of Neuroscience Methods, 2006, 153(2):163-182. 赵志宏, 杨绍普. 基于相对小波能量的滚动轴承故障诊断[J]. 电子测量与仪器学报, 2011, 25(1):44-49. WILCOX W W. Review of Literature on the Effects of Early Stages of Decay on Wood Strength[J]. Wood and Fiber,1978,9(4):252-257. THOMAS F, GIGER B, ADAM C. General Shell Section Properties and Failure Model for Cross-Laminated Timber Obtained by Numerical Homogenization[J]. Engineering Structures, 2018, 163:77-92. 王耀先. 复合材料结构设计[M]. 北京:化学工业出版社,1991:83-100. 王新敏. ANSYS工程结构数值分析[M]. 北京:人民交通出版社,394-400. 中华人民共和国建设部. 古建筑木结构维护与加固技术规范:GB 50165-92[S]. 北京:1992. 俞茂宏,张学彬. 西安古城墙研究:建筑结构和抗震[M]. 西安:西安交通大学出版社,1994:53-54. 韩广森. 城市轨道交通微幅振动对古建筑的影响[D]. 西安:西安建筑科技大学,2011. 赵均海,俞茂宏,高大峰,等. 中国古代木结构的弹塑性有限元分析[J]. 西安建筑科技大学学报,1999,31(2):131-133. 曾建. 交通激励作用下西安钟楼动力特性分析[D]. 西安:西安建筑科技大学, 2013. 潘景龙,祝恩淳. 木结构设计原理[M]. 北京:中国建筑工业出版社,2009:23-24.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 6
- PDF下载量: 1
- 被引次数: 0